
摘要
最近提出的时序集成(Temporal Ensembling)方法在多个半监督学习基准测试中取得了最先进的结果。该方法对每个训练样本的标签预测值维护一个指数移动平均值,并对与该目标不一致的预测进行惩罚。然而,由于目标仅在每个epoch结束时更新一次,因此在处理大规模数据集时,时序集成变得难以管理。为了解决这一问题,我们提出了一种名为均值教师(Mean Teacher)的方法,该方法对模型权重进行平均而不是标签预测值。此外,均值教师提高了测试准确性,并且能够在比时序集成更少的标签下进行训练。在不改变网络架构的情况下,均值教师在使用250个标签的SVHN数据集上实现了4.35%的错误率,优于使用1000个标签训练的时序集成。我们还表明,良好的网络架构对于性能至关重要。通过结合均值教师和残差网络(Residual Networks),我们将CIFAR-10数据集上使用4000个标签的最先进错误率从10.55%降低到6.28%,并在ImageNet 2012数据集上使用10%的标签将错误率从35.24%降低到9.11%。
代码仓库
sud0301/semisup-semseg
pytorch
GitHub 中提及
INK-USC/DualRE
pytorch
GitHub 中提及
shunk031/chainer-MeanTeachers
GitHub 中提及
liuwei16/ALFNet
tf
GitHub 中提及
benathi/fastswa-semi-sup
pytorch
GitHub 中提及
CuriousAI/mean-teacher
官方
tf
GitHub 中提及
Lan1991Xu/ONE_NeurIPS2018
pytorch
GitHub 中提及
ZHKKKe/PixelSSL
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| semi-supervised-image-classification-on-2 | Mean Teacher (ResNeXt-152) | Top 5 Accuracy: 90.89% |
| semi-supervised-image-classification-on-cifar | Mean Teacher | Percentage error: 6.28 |
| semi-supervised-image-classification-on-cifar-6 | MeanTeacher | Percentage error: 47.32 |
| semi-supervised-image-classification-on-svhn | Mean Teacher | Accuracy: 96.05 |
| semi-supervised-image-classification-on-svhn-1 | MeanTeacher | Accuracy: 93.55 |
| semi-supervised-semantic-segmentation-on-23 | MeanTeacher (Range View) | mIoU (1% Labels): 34.2 mIoU (10% Labels): 49.8 mIoU (20% Labels): 51.6 mIoU (50% Labels): 53.3 |
| semi-supervised-semantic-segmentation-on-23 | MeanTeacher (Voxel) | mIoU (1% Labels): 41.0 mIoU (10% Labels): 50.1 mIoU (20% Labels): 52.8 mIoU (50% Labels): 53.9 |
| semi-supervised-semantic-segmentation-on-24 | MeanTeacher (Range View) | mIoU (1% Labels): 37.5 mIoU (10% Labels): 53.1 mIoU (20% Labels): 56.1 mIoU (50% Labels): 57.4 |
| semi-supervised-semantic-segmentation-on-24 | MeanTeacher (Voxel) | mIoU (1% Labels): 45.4 mIoU (10% Labels): 57.1 mIoU (20% Labels): 59.2 mIoU (50% Labels): 60.0 |
| semi-supervised-semantic-segmentation-on-25 | MeanTeacher (Range View) | mIoU (1% Labels): 42.1 mIoU (10% Labels): 60.4 mIoU (20% Labels): 65.4 mIoU (50% Labels): 69.4 |
| semi-supervised-semantic-segmentation-on-25 | MeanTeacher (Voxel) | mIoU (1% Labels): 51.6 mIoU (10% Labels): 66.0 mIoU (20% Labels): 67.1 mIoU (50% Labels): 71.7 |