16 天前

原型网络用于少样本学习

原型网络用于少样本学习

摘要

我们提出原型网络(prototypical networks)来解决少样本分类问题,即在仅提供每个新类别少量样本的情况下,要求分类器能够泛化到训练集中未见过的新类别。原型网络通过学习一个度量空间,在该空间中可通过计算各类别原型表示与样本之间的距离来进行分类。相较于近期的少样本学习方法,原型网络具有更简单的归纳偏置,在数据有限的场景下表现出显著优势,并取得了优异的性能。我们进一步分析表明,一些简单的设计选择即可在性能上显著超越那些依赖复杂网络结构和元学习机制的近期方法。此外,我们将原型网络扩展至零样本学习任务,在CU-Birds数据集上取得了当前最优(state-of-the-art)的结果。

代码仓库

jsalbert/prototypical-networks
pytorch
GitHub 中提及
goldblum/AdversarialQuerying
pytorch
GitHub 中提及
WangTianduo/Prototypical-Networks
pytorch
GitHub 中提及
lif31up/prototypical-network
pytorch
GitHub 中提及
amazon-research/dse
pytorch
GitHub 中提及
joshfp/fellowship.ai
pytorch
GitHub 中提及
RongKaiWeskerMA/INSTA
pytorch
GitHub 中提及
msfuxian/DualAttentionNet
mindspore
GitHub 中提及
joshfp/one-shot-learning
pytorch
GitHub 中提及
ash3n/Latent-Similarity
tf
GitHub 中提及
DrMMZ/ProtoNet
tf
GitHub 中提及
HenryCWoo/LTLProject
pytorch
GitHub 中提及
COAOX/Cifar-Prototypical
pytorch
GitHub 中提及
Hsankesara/DeepResearch
pytorch
GitHub 中提及
akshatgarg99/FewShotLearning
pytorch
GitHub 中提及
Michedev/Prototypical-Networks
pytorch
GitHub 中提及
yredwood/fewshot_blogpost
tf
GitHub 中提及
oscarknagg/few-shot
pytorch
GitHub 中提及
andrewbo29/mtm-meta-learning-sa
pytorch
GitHub 中提及
ajfisch/few-shot-cp
pytorch
GitHub 中提及
ebadrian/metadl
tf
GitHub 中提及
KamalM8/Few-Shot-learning-Fashion
pytorch
GitHub 中提及
mariehane/prototypical-networks
pytorch
GitHub 中提及
Sha-Lab/FEAT
pytorch
GitHub 中提及

基准测试

基准方法指标
category-agnostic-pose-estimation-on-mp100ProtoNet
Mean PCK@0.2 - 1shot: 44.78
few-shot-image-classification-on-cub-200-50Prototypical Networks
Accuracy: 54.6
few-shot-image-classification-on-dirichletProtoNet
1:1 Accuracy: 53.6
few-shot-image-classification-on-dirichlet-1ProtoNet
1:1 Accuracy: 74.2
few-shot-image-classification-on-meta-datasetPrototypical Networks
Accuracy: 60.573
few-shot-image-classification-on-meta-dataset-1Prototypical Networks
Mean Rank: 8.5
few-shot-image-classification-on-mini-12Prototypical Networks
Accuracy: 32.9
few-shot-image-classification-on-mini-12Prototypical Networks (Higher Way)
Accuracy: 34.6
few-shot-image-classification-on-mini-13Prototypical Networks (Higher Way)
Accuracy: 50.1
few-shot-image-classification-on-mini-13Prototypical Networks
Accuracy: 49.3
few-shot-image-classification-on-mini-2Prototypical Networks
Accuracy: 49.42
few-shot-image-classification-on-mini-3Prototypical Networks
Accuracy: 68.20
few-shot-image-classification-on-mini-4Prototypical Networks
Accuracy: 74.3
few-shot-image-classification-on-mini-5ProtoNet (Snell et al., 2017)
Accuracy: 45.31
few-shot-image-classification-on-omniglot-1-1Prototypical Networks
Accuracy: 96%
few-shot-image-classification-on-omniglot-1-2Prototypical Networks
Accuracy: 98.8
few-shot-image-classification-on-omniglot-5-1Prototypical Networks
Accuracy: 98.9%
few-shot-image-classification-on-omniglot-5-2Prototypical Networks
Accuracy: 99.7
few-shot-image-classification-on-stanford-1Prototypical Nets++
Accuracy: 48.19
few-shot-image-classification-on-stanford-2Prototypical Nets++
Accuracy: 40.90
few-shot-image-classification-on-stanford-3Prototypical Nets++
Accuracy: 52.93
few-shot-image-classification-on-tiered-2Prototypical Networks (Higher Way)
Accuracy: 38.6
few-shot-image-classification-on-tiered-2Prototypical Networks
Accuracy: 37.3
few-shot-image-classification-on-tiered-3Prototypical Networks (Higher Way)
Accuracy: 58.3
few-shot-image-classification-on-tiered-3Prototypical Networks
Accuracy: 57.8
image-classification-on-tiered-imagenet-5-wayPrototypical Net
Accuracy: 69.57

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
原型网络用于少样本学习 | 论文 | HyperAI超神经