
摘要
我们提出了一种概念简洁、灵活且通用的物体实例分割框架。该方法能够高效地检测图像中的物体,同时为每个实例生成高质量的分割掩码。该方法称为Mask R-CNN,它在Faster R-CNN的基础上新增了一个并行分支,用于预测物体的掩码,而原有的分支则继续用于边界框识别。Mask R-CNN训练简单,对Faster R-CNN仅引入少量计算开销,运行速度可达每秒5帧(5 fps)。此外,Mask R-CNN易于推广至其他任务,例如可在同一框架下实现人体姿态估计。我们在COCO挑战赛的三个赛道(包括实例分割、边界框目标检测和人体关键点检测)中均取得了领先结果。在不使用任何额外技巧的情况下,Mask R-CNN在每一项任务上均超越了所有现有单模型方法,包括COCO 2016挑战赛的优胜者。我们希望这一简洁而高效的方法能成为实例级识别任务的坚实基线,助力未来相关研究的发展。代码已开源,地址为:https://github.com/facebookresearch/Detectron
代码仓库
mirzaevinom/data_science_bowl_2018
tf
GitHub 中提及
houssemjebari/Fruit-Detection
GitHub 中提及
lincaiming/py-faster-rcnn-update
GitHub 中提及
kbardool/mrcnn3
tf
GitHub 中提及
mic-dkfz/medicaldetectiontoolkit
pytorch
GitHub 中提及
ColdNoodler/py-faster-rcnn-cuda10
caffe2
GitHub 中提及
rickyHong/py-faster-rcnn-repl
caffe2
GitHub 中提及
pj1920/mask-r-cnn
tf
GitHub 中提及
cwbabel/faster-cnn
caffe2
GitHub 中提及
cokowpublic/Nuclei-Segmentation
GitHub 中提及
DeNA/Chainer_Mask_R-CNN
caffe2
GitHub 中提及
scolocke/Traffic_Sign_ID_GTSRB_GTSDB
tf
GitHub 中提及
dvl-tum/motsynth-baselines
pytorch
GitHub 中提及
Biantian/MscProject
pytorch
GitHub 中提及
bethgelab/siamese-mask-rcnn
tf
GitHub 中提及
Krupal09/MaskRCNN-Demo
tf
GitHub 中提及
ErikGDev/instance-segmentation
pytorch
GitHub 中提及
alililia/gpu_maskrcnn_mobilenetv1
mindspore
GitHub 中提及
Alexander-Whelan/Zeus
tf
GitHub 中提及
devsoft123/fast-cnn
caffe2
GitHub 中提及
longcw/roialign.pytorch
pytorch
GitHub 中提及
pvdhove/owl-mask-rcnn
GitHub 中提及
leonardhan1979/fasterRCNN
caffe2
GitHub 中提及
lukoucky/image_recommendation
GitHub 中提及
yj-littlesky/py-faster-rcnn
caffe2
GitHub 中提及
rickyHong/py-faster-rcnn-repl-cudnn5-support
caffe2
GitHub 中提及
vimalabs/VIMA
pytorch
GitHub 中提及
o-evgeny/MRCNN_DeepFashion2
tf
GitHub 中提及
bowu1004/instance_segmentation_RealSense
pytorch
GitHub 中提及
boom85423/Cartoon-style-Stickers-Generator
pytorch
GitHub 中提及
CarstenIsert/DeepBurn
tf
GitHub 中提及
chenwuperth/ClaRAN
tf
GitHub 中提及
elonashatri/pitch_mask_rcnn
tf
GitHub 中提及
MIC-DKFZ/RegRCNN
pytorch
GitHub 中提及
quocdat32461997/Mask_RCNN
tf
GitHub 中提及
chihyanghsu0805/object_detection_yolo
tf
GitHub 中提及
miaohua1982/simple_fasterrcnn_pytorch
pytorch
GitHub 中提及
jremillard/images-to-osm
tf
GitHub 中提及
BlackAngel1111/Fast-RCNN
caffe2
GitHub 中提及
kdethoor/panoptictorch
pytorch
GitHub 中提及
yangyucheng000/Mask-RCNN
mindspore
GitHub 中提及
2023-MindSpore-1/ms-code-208
mindspore
GitHub 中提及
SUYEgit/Surgery-Robot-Detection-Segmentation
tf
GitHub 中提及
yczhang1017/SSD_resnet_pytorch
pytorch
GitHub 中提及
casiopa/Madrid_Rooftops
tf
GitHub 中提及
xzabg/faster-rcnn-with-Caltech
GitHub 中提及
2023-MindSpore-1/ms-code-207
mindspore
GitHub 中提及
ykasten/layered-neural-atlases
pytorch
GitHub 中提及
soulguy/Faster-rcnn
caffe2
GitHub 中提及
jhihan/rsna_pneumonia_detection
tf
GitHub 中提及
multimodallearning/pytorch-mask-rcnn
pytorch
GitHub 中提及
GAOwy123/py-faster-rcnn
caffe2
GitHub 中提及
tryolabs/luminoth
tf
GitHub 中提及
NVlabs/industreallib
pytorch
GitHub 中提及
stanleycelestin1/AirsimDetectron
tf
GitHub 中提及
ravenwritingdesk/py-faster-rcnn-master
caffe2
GitHub 中提及
delldu/MaskRCNN
pytorch
GitHub 中提及
guanfuchen/py-faster-rcnn
caffe2
GitHub 中提及
SonginCV/MAF_HDA
GitHub 中提及
Arthur-Shi/py-faster-rcnn
caffe2
GitHub 中提及
ZQPei/deep_sort_pytorch
pytorch
GitHub 中提及
godspeedcurry/lung-nodule-detection
caffe2
GitHub 中提及
lucylow/salty-wet-man
tf
GitHub 中提及
baodi23/hourglass-facekeypoints-detection
pytorch
GitHub 中提及
nikhithakarennagari/Git
caffe2
GitHub 中提及
sunqiangxtcsun/faster-rcnn
caffe2
GitHub 中提及
AKASH2907/bird-species-classification
tf
GitHub 中提及
UPCLJ/py-faster-rcnn
caffe2
GitHub 中提及
facebookresearch/detectron2
pytorch
lichengunc/mask-faster-rcnn
pytorch
GitHub 中提及
zhong110020/py-faster-rcnn
caffe2
GitHub 中提及
noelcodes/Mask_RCNN
GitHub 中提及
collectionslab/Omniscribe
pytorch
GitHub 中提及
RaiyaniNirav/Mask-R-CNN-for-water-detection
tf
GitHub 中提及
raymon-tian/hourglass-facekeypoints-detection
pytorch
GitHub 中提及
charlesYangM/py-faster-rcnn-80.28
caffe2
GitHub 中提及
saehan-choi/pixellib_auto_labelling
pytorch
GitHub 中提及
SfTI-Robotics/ROS-label-node
pytorch
GitHub 中提及
rh01/faster-rcnn
caffe2
GitHub 中提及
jodumagpi/Xray-ObjSep-v1
pytorch
GitHub 中提及
maxfrei750/FibeR-CNN
pytorch
GitHub 中提及
mstfakts/building-detection-maskrcnn
GitHub 中提及
KMnP/fashionpedia-api
tf
GitHub 中提及
zhangchi9/Airbus_Ship_Detection
GitHub 中提及
jianing-sun/Mask-YOLO
tf
GitHub 中提及
BingkAI-B21CAP0161/C-Mask-Machine-Learning
tf
GitHub 中提及
DivJAth/DeepLearning5922
GitHub 中提及
maxfrei750/DeepParticleNet
tf
GitHub 中提及
BupyeongHealer/Mask_RCNN_tf_2.x
tf
GitHub 中提及
itsasimiqbal/SeBRe
tf
GitHub 中提及
lincaiming/py-faster-rcnn-windows
GitHub 中提及
qq330488563/TEST
caffe2
GitHub 中提及
yangyucheng000/maskrcnn_mobilenetv1
mindspore
GitHub 中提及
beassssry/U
caffe2
GitHub 中提及
jiajunhua/facebookresearch-Detectron
caffe2
GitHub 中提及
harrybolingot/mymaskrcnn
tf
GitHub 中提及
fsafe/Capstone
pytorch
GitHub 中提及
MIC-DKFZ/DetectionAndRegression
pytorch
GitHub 中提及
Qinhj07/ATOMCode
pytorch
GitHub 中提及
louisyuzhe/car-damage-detector
tf
GitHub 中提及
evaristr/py-faster_rcnn
caffe2
GitHub 中提及
Mrnoorsingh/car-parking
GitHub 中提及
crowdai/crowdai-mapping-challenge-mask-rcnn
tf
GitHub 中提及
rh01/fast-rnn
caffe2
GitHub 中提及
EmGarr/kerod
tf
GitHub 中提及
phykn/film-defect-detection
pytorch
GitHub 中提及
SonginCV/GMPHD_SAF
GitHub 中提及
RajArPatra/Super-OCR
pytorch
GitHub 中提及
jklife3/maskrcnn-impl
tf
GitHub 中提及
leochangzliao/OPBM
GitHub 中提及
qilei123/pyfasterrcnn
caffe2
GitHub 中提及
jylins/core-text
pytorch
GitHub 中提及
chuanqichen/deepcoaching
pytorch
GitHub 中提及
StephenEkaputra/Mask_RCNN-TinyPascalVOC
tf
GitHub 中提及
TejasBajania/Mtech_thesis_project
GitHub 中提及
AKASH2907/bird_species_classification
tf
GitHub 中提及
muyistarsky/MaskRCNN
mindspore
GH3927/Mask-RCNN-applied-to-cranes
tf
GitHub 中提及
collectionslab/book-annotation-classification
pytorch
GitHub 中提及
xunhen/py-faster-rcnn-wjc
caffe2
GitHub 中提及
infini8-13/MaskRCNN_tryout
GitHub 中提及
alexalm4190/Mask_RCNN-Vizzy_Hand
GitHub 中提及
ayoolaolafenwa/PixelLib
tf
GitHub 中提及
SonginCV/GMPHD_MAF
GitHub 中提及
busyboxs/What-I-have-star
tf
GitHub 中提及
jooyounghun/AI-Team-5
GitHub 中提及
ls5122/mask-rcnn
pytorch
GitHub 中提及
deolipankaj/Stone_Detection_MRCNN
tf
GitHub 中提及
facebookresearch/detectron
pytorch
GitHub 中提及
alililia/ascend_maskrcnn_mobilenetv1
mindspore
GitHub 中提及
open-edge-platform/geti
pytorch
GitHub 中提及
charlesshang/fastmaskrcnn
tf
GitHub 中提及
waspinator/deep-learning-explorer
GitHub 中提及
xjnpark/ds
caffe2
GitHub 中提及
hellohaozheng/maskrcnn-mindspore
mindspore
Lopezurrutia/DSB_2018
tf
GitHub 中提及
busyboxs/faster_rcnn_voc
GitHub 中提及
Makunda/DeepLearningASL
GitHub 中提及
TuSimple/mx-maskrcnn
tf
GitHub 中提及
NiravRaiyani/Mask-R-CNN-for-water-detection
tf
GitHub 中提及
phtruongan/py-faster-rcnn-docker
GitHub 中提及
sunhui1234/haha
caffe2
GitHub 中提及
collectionslab/annotations-computervision
pytorch
GitHub 中提及
samsh19/ML_project
pytorch
GitHub 中提及
fdac18/ForensicImages
GitHub 中提及
nikhithakarennagari/1311
caffe2
GitHub 中提及
yubaoliu/rds-slam
GitHub 中提及
krantirk/py-faster-rcnn
caffe2
GitHub 中提及
TejasBajania/Mtech_pro
GitHub 中提及
asyrovprog/cs230project
GitHub 中提及
George-Ogden/Mask-RCNN
pytorch
GitHub 中提及
jasjeetIM/Mask-RCNN
GitHub 中提及
sbetageri/MaskRCNN
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| instance-segmentation-on-bdd100k-val | Mask R-CNN | AP: 20.5 |
| instance-segmentation-on-coco | Mask R-CNN (ResNeXt-101-FPN) | AP50: 60.0 AP75: 39.4 APL: 53.5 APM: 39.9 APS: 16.9 mask AP: 37.1 |
| instance-segmentation-on-isaid | Mask-RCNN+ | Average Precision: 37.18 |
| instance-segmentation-on-isaid | Mask-RCNN | Average Precision: 36.50 |
| keypoint-detection-on-coco-1 | Mask R-CNN | Test AP: 63.1 Validation AP: 69.2 |
| keypoint-detection-on-coco-test-challenge | Mask R-CNN* | AP: 68.9 AP50: 89.2 AP75: 75.2 APL: 82.6 AR: 75.4 AR50: 93.2 AR75: 81.2 ARL: 76.8 ARM: 70.2 |
| keypoint-detection-on-coco-test-dev | Mask R-CNN | AP50: 87.3 AP75: 68.7 APL: 71.4 APM: 57.8 |
| multi-human-parsing-on-mhp-v10 | Mask R-CNN | AP 0.5: 52.68% |
| multi-human-parsing-on-mhp-v20 | Mask R-CNN | AP 0.5: 14.9 |
| multi-person-pose-estimation-on-crowdpose | Mask R-CNN | AP Easy: 69.4 AP Hard: 45.8 AP Medium: 57.9 mAP @0.5:0.95: 57.2 |
| multi-person-pose-estimation-on-ochuman | Mask R-CNN | AP50: 33.2 AP75: 24.5 Validation AP: 20.2 |
| multi-tissue-nucleus-segmentation-on-kumar | Mask R-CNN (e) | Dice: 0.760 Hausdorff Distance (mm): 50.9 |
| nuclear-segmentation-on-cell17 | Mask R-CNN | Dice: 0.707 F1-score: 0.8004 Hausdorff: 12.6723 |
| object-detection-on-coco | Mask R-CNN (ResNeXt-101-FPN) | AP50: 62.3 AP75: 43.4 APL: 51.2 APM: 43.2 APS: 22.1 Hardware Burden: 9G box mAP: 39.8 |
| object-detection-on-coco | Mask R-CNN (ResNet-101-FPN) | AP50: 60.3 AP75: 41.7 APL: 50.2 APM: 41.1 APS: 20.1 Hardware Burden: 9G box mAP: 38.2 |
| object-detection-on-coco-minival | Mask R-CNN (ResNeXt-101-FPN) | AP50: 59.5 AP75: 38.9 box AP: 36.7 |
| object-detection-on-coco-minival | Mask R-CNN (ResNet-50-FPN) | box AP: 37.7 |
| object-detection-on-coco-minival | Mask R-CNN (ResNet-101-FPN) | box AP: 40.0 |
| object-detection-on-coco-o | Mask R-CNN (ResNet-50) | Average mAP: 17.1 |
| object-detection-on-coco-o | Mask R-CNN (ResNet-50) | Effective Robustness: -0.11 |
| object-detection-on-isaid | Mask-RCNN | Average Precision: 36.50 |
| object-detection-on-isaid | Mask-RCNN+ | Average Precision: 37.18 |
| object-localization-on-grit | Mask R-CNN | Localization (ablation): 44.7 Localization (test): 45.1 |
| panoptic-segmentation-on-cityscapes-val | Mask R-CNN+COCO | PQth: 54.0 |
| pose-estimation-on-coco-test-dev | Mask-RCNN | AP: 63.1 AP50: 87.3 AP75: 68.7 APL: 71.4 |
| real-time-object-detection-on-coco-1 | Mask R-CNN X-152-32x8d | box AP: 45.2 |