
摘要
许多问题可以表述为在图结构数据上的预测。在这项工作中,我们从规则网格中推广卷积算子到任意图上,同时避免了频谱域的使用,这使得我们可以处理不同大小和连通性的图。为了超越简单的扩散过程,滤波器权重被设定为依赖于顶点邻域中的特定边标签。结合适当的图粗化选择,我们探讨了构建用于图分类的深度神经网络。特别是,我们在点云分类中展示了我们方法的普适性,并达到了新的最先进水平;在图分类数据集上,我们的方法也优于其他深度学习方法。源代码可在 https://github.com/mys007/ecc 获取。
代码仓库
mys007/ecc
官方
pytorch
GitHub 中提及
rusty1s/pytorch_cluster
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| 3d-object-classification-on-modelnet10 | ECC (12 votes) | Accuracy: 90 |
| 3d-object-classification-on-modelnet40 | ECC (12 votes) | Classification Accuracy: 83.2 |
| 3d-point-cloud-classification-on-modelnet40 | ECC | Mean Accuracy: 83.2 Overall Accuracy: 87.4 |
| 3d-point-cloud-classification-on-sydney-urban | ECC | F1: 78.4 |
| graph-classification-on-dd | ECC (5 scores) | Accuracy: 74.1% |
| graph-classification-on-enzymes | ECC (5 scores) | Accuracy: 52.67% |
| graph-classification-on-mutag | ECC (5 scores) | Accuracy: 88.33% |
| graph-classification-on-nci1 | ECC (5 scores) | Accuracy: 83.8% |
| graph-classification-on-nci109 | ECC (5 scores) | Accuracy: 82.14 |