4 个月前

基于截锥体的PointNets用于从RGB-D数据中检测3D物体

基于截锥体的PointNets用于从RGB-D数据中检测3D物体

摘要

在这项研究中,我们探讨了从RGB-D数据中进行三维物体检测的方法,涵盖了室内和室外场景。以往的方法通常集中于图像或三维体素(voxels),这往往掩盖了三维数据的自然模式和不变性。而我们的方法则是直接在原始点云上操作,通过弹出RGB-D扫描来实现。然而,这种方法面临的一个关键挑战是如何在大规模场景的点云中高效地定位物体(区域提议)。我们的方法不仅依赖于三维提议,还结合了成熟的二维物体检测器和先进的三维深度学习技术来进行物体定位,从而实现了高效性和对小物体的高度召回率。得益于在原始点云上直接学习的优势,即使在严重遮挡或点云非常稀疏的情况下,我们的方法也能精确估计三维边界框。在KITTI和SUN RGB-D 3D检测基准测试中,我们的方法显著超越了现有技术水平,并且具备实时处理能力。

代码仓库

zgx0534/pointnet_win
tf
GitHub 中提及
MikeS96/3d_obj_detection
GitHub 中提及
y2kmz/pointnetv2
tf
GitHub 中提及
Lw510107/PointNet
tf
GitHub 中提及
RPFey/frustum-pointnets
tf
GitHub 中提及
charlesq34/pointnet
tf
GitHub 中提及
alpemek/ais3d
pytorch
GitHub 中提及
LONG-9621/PointNet-
tf
GitHub 中提及
Yc174/frustum-pointnets
tf
GitHub 中提及
bt77/pointnet
tf
GitHub 中提及
dwtstore/sfm1
tf
GitHub 中提及
coconutzs/PointNet_zs
tf
GitHub 中提及
YiruS/pointnet_adversarial
tf
GitHub 中提及
LONG-9621/Extract_Point_3D
tf
GitHub 中提及
VaanHUANG/CSCI5210HW1
tf
GitHub 中提及
wuryantoAji/POINTNET
tf
GitHub 中提及
Smiler-Jin/frustum_pointnet
tf
GitHub 中提及
ahmed-anas/thesis-pointnet
tf
GitHub 中提及
llzlcl/pointcloud-segment
tf
GitHub 中提及
Yang2446/pointnet
tf
GitHub 中提及
KiranAkadas/My_Pointnet_v2
tf
GitHub 中提及
BPMJG/annotated-F-pointnet
tf
GitHub 中提及
brbzjl/pointnet2
tf
GitHub 中提及
xurui1217/pointnet2-master
tf
GitHub 中提及
aviros/pointnet_totations
tf
GitHub 中提及
arbaza/3D-object-detection-KITTI
pytorch
GitHub 中提及
ytng001/sensemaking
tf
GitHub 中提及
tonysy/pointnet2_tf
tf
GitHub 中提及
KhusDM/PointNetTree
tf
GitHub 中提及
houseleo/pointnet
tf
GitHub 中提及
KaidongLi/tf-3d-alpha
tf
GitHub 中提及
ben0110/Frustum_pointnet_2D
tf
GitHub 中提及
LONG-9621/PointNet
tf
GitHub 中提及
KiritoGH/frustum-pointnets
tf
GitHub 中提及
BPMJG/annotated_pointnet
tf
GitHub 中提及
charlesq34/pointnet2
tf
GitHub 中提及
Veincore/f-pointnet
GitHub 中提及
LebronGG/PointNet
tf
GitHub 中提及
ben0110/Radar-Pointnet-PARA
tf
GitHub 中提及
voidrank/Geo-CNN
tf
GitHub 中提及
aviros/roatationPointnet
tf
GitHub 中提及
zenroad/modifypointnet
tf
GitHub 中提及
yanx27/Pointnet
tf
GitHub 中提及
FlowWind1999/pointnet-2
tf
GitHub 中提及
charlesq34/frustum-pointnets
官方
tf
GitHub 中提及

基准测试

基准方法指标
3d-object-detection-on-kitti-cars-easyFrustum PointNets
AP: 81.2%
3d-object-detection-on-kitti-cars-easy-valF-PointNet [Qi:2018fd]
AP: 83.26
3d-object-detection-on-kitti-cars-hardFrustum PointNets
AP: 62.19%
3d-object-detection-on-kitti-cars-hard-valF-PointNet [Qi:2018fd]
AP: 62.56
3d-object-detection-on-kitti-cars-moderate-1F-PointNet [Qi:2018fd]
AP: 69.28
3d-object-detection-on-kitti-cyclist-easy-valF-PointNet++ [Qi:2018fd]
AP: 77.15
3d-object-detection-on-kitti-cyclist-easy-valF-PointNet [Qi:2018fd]
AP: 74.54
3d-object-detection-on-kitti-cyclist-hard-valF-PointNet++ [Qi:2018fd]
AP: 53.37
3d-object-detection-on-kitti-cyclist-hard-valF-PointNet [Qi:2018fd]
AP: 52.65
3d-object-detection-on-kitti-cyclist-moderateF-PointNet++ [Qi:2018fd]
AP: 56.49
3d-object-detection-on-kitti-cyclist-moderateF-PointNet [Qi:2018fd]
AP: 55.95
3d-object-detection-on-kitti-cyclistsFrustum PointNets
AP: 56.77%
3d-object-detection-on-kitti-cyclists-easyFrustum PointNets
AP: 71.96%
3d-object-detection-on-kitti-cyclists-hardFrustum PointNets
AP: 50.39%
3d-object-detection-on-kitti-pedestrianF-PointNet [Qi:2018fd]
AP: 55.85
3d-object-detection-on-kitti-pedestrianF-PointNet++ [Qi:2018fd]
AP: 61.32
3d-object-detection-on-kitti-pedestrian-easyF-PointNet++ [Qi:2018fd]
AP: 70.00
3d-object-detection-on-kitti-pedestrian-easyF-PointNet [Qi:2018fd]
AP: 65.08
3d-object-detection-on-kitti-pedestrian-hardF-PointNet++ [Qi:2018fd]
AP: 53.59
3d-object-detection-on-kitti-pedestrian-hardF-PointNet [Qi:2018fd]
AP: 49.28
3d-object-detection-on-kitti-pedestriansFrustum PointNets
AP: 42.15%
3d-object-detection-on-kitti-pedestrians-easyFrustum PointNets
AP: 51.21%
3d-object-detection-on-kitti-pedestrians-hardFrustum PointNets
AP: 40.23%
3d-object-detection-on-sun-rgbdFrustum PointNets
mAP@0.25: 54.0
3d-object-detection-on-sun-rgbd-valF-PointNet
Inference Speed (s): 0.12
mAP@0.25: 54.0
birds-eye-view-object-detection-on-kittiF-PointNet
AP: 61.96%
birds-eye-view-object-detection-on-kitti-1F-PointNet
AP: 50.22%
object-detection-in-indoor-scenes-on-sun-rgbFrustum Pointnet (RGB)
AP 0.5: 56.8
object-detection-on-kitti-cars-hardF-PointNet
AP: 62.19
object-localization-on-kitti-cars-easyFrustum PointNets
AP: 88.7%
object-localization-on-kitti-cars-hardFrustum PointNets
AP: 75.33%
object-localization-on-kitti-cars-moderateFrustum PointNets
AP: 84.0%
object-localization-on-kitti-cyclistsFrustum PointNets
AP: 61.96%
object-localization-on-kitti-cyclists-easyFrustum PointNets
AP: 75.38%
object-localization-on-kitti-cyclists-hardFrustum PointNets
AP: 54.68%
object-localization-on-kitti-pedestriansFrustum PointNets
AP: 50.22%
object-localization-on-kitti-pedestrians-easyFrustum PointNets
AP: 58.09%
object-localization-on-kitti-pedestrians-hardFrustum PointNets
AP: 47.2%

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
基于截锥体的PointNets用于从RGB-D数据中检测3D物体 | 论文 | HyperAI超神经