
摘要
我们提出了一种名为AVOD(Aggregate View Object Detection)的网络,用于自动驾驶场景中的目标检测。该神经网络架构利用激光雷达点云和RGB图像生成特征,这些特征由两个子网络共享:一个区域提议网络(Region Proposal Network, RPN)和一个第二阶段检测网络。所提出的RPN采用了一种新颖的架构,能够在高分辨率特征图上执行多模态特征融合,从而在道路场景中为多个目标类别生成可靠的3D目标提议。利用这些提议,第二阶段检测网络进行精确的定向3D边界框回归和类别分类,以预测3D空间中目标的范围、方向和分类。实验结果表明,我们的架构在KITTI 3D目标检测基准测试中达到了最先进的水平,并且能够在低内存占用的情况下实时运行,使其成为适用于自动驾驶车辆部署的理想候选方案。代码地址:https://github.com/kujason/avod
代码仓库
asharakeh/kitti_native_evaluation
pytorch
GitHub 中提及
kujason/ip_basic
GitHub 中提及
kujason/avod
官方
tf
GitHub 中提及
Fredrik00/avod
tf
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| 3d-object-detection-on-kitti-cars-easy | AVOD + Feature Pyramid | AP: 81.94% |
| 3d-object-detection-on-kitti-cars-hard | AVOD + Feature Pyramid | AP: 66.38% |
| 3d-object-detection-on-kitti-cyclists | AVOD + Feature Pyramid | AP: 52.18% |
| 3d-object-detection-on-kitti-cyclists-easy | AVOD + Feature Pyramid | AP: 64.0% |
| 3d-object-detection-on-kitti-cyclists-hard | AVOD + Feature Pyramid | AP: 46.61% |
| 3d-object-detection-on-kitti-pedestrians | AVOD + Feature Pyramid | AP: 42.81% |
| 3d-object-detection-on-kitti-pedestrians-easy | AVOD + Feature Pyramid | AP: 50.8% |
| 3d-object-detection-on-kitti-pedestrians-hard | AVOD + Feature Pyramid | AP: 40.88% |
| birds-eye-view-object-detection-on-kitti | AVOD-FPN | AP: 57.48% |
| birds-eye-view-object-detection-on-kitti-1 | AVOD-FPN | AP: 51.05% |
| birds-eye-view-object-detection-on-kitti-cars | AVOD-FPN | AP: 83.79% |
| birds-eye-view-object-detection-on-kitti-cars-4 | AVOD-FPN | AP: 88.53 |