
摘要
我们介绍了人体网格恢复(Human Mesh Recovery, HMR),这是一种从单张RGB图像中重建完整3D人体网格的端到端框架。与大多数当前仅计算2D或3D关节位置的方法不同,我们生成了一种更为丰富且实用的网格表示,该表示由形状和3D关节角度参数化。主要目标是最小化关键点的重投影损失,这使得我们的模型可以使用只有真实2D注释的野外图像进行训练。然而,仅靠重投影损失会使模型高度欠约束。在本研究中,我们通过引入一个对抗网络来解决这一问题,该网络利用大量3D人体网格数据库判断一个人体参数是否真实。我们展示了HMR可以在有无配对的2D到3D监督的情况下进行训练。我们不依赖于中间的2D关键点检测,而是直接从图像像素中推断出3D姿态和形状参数。给定包含人的边界框时,我们的模型可以实时运行。我们在各种野外图像上验证了我们的方法,并在输出3D网格的任务上优于之前的基于优化的方法,在如3D关节位置估计和部件分割等任务上也显示出具有竞争力的结果。
代码仓库
ManifoldFR/recvis-project
tf
GitHub 中提及
open-mmlab/mmpose
pytorch
2023-MindSpore-1/ms-code-27
mindspore
GitHub 中提及
Liuxiang0358/HMR
mindspore
GitHub 中提及
russoale/hmr2.0
tf
GitHub 中提及
anilarmagan/HANDS19-Challenge-Toolbox
pytorch
GitHub 中提及
MandyMo/pytorch_HMR
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| 3d-human-pose-estimation-on-3dpw | HMR | Acceleration Error: 37.4 MPJPE: 130.0 |
| 3d-human-pose-estimation-on-agora | HMR | B-MPJPE: 180.5 B-MVE: 173.6 B-NMJE: 226.0 B-NMVE: 217.0 |
| 3d-human-pose-estimation-on-human36m | HMR | Average MPJPE (mm): 87.97 PA-MPJPE: 58.1 |
| 3d-human-pose-estimation-on-mpi-inf-3dhp | HMR | AUC: 36.5 MPJPE: 124.2 PA-MPJPE: 89.8 PCK: 72.9 |
| 3d-human-shape-estimation-on-ssp-3d | HMR | PVE-T-SC: 22.9 mIOU: 69.0 |
| 3d-human-shape-estimation-on-ssp-3d | HMR(unpaired) | PVE-T-SC: 20.8 mIOU: 61.0 |
| 3d-multi-person-pose-estimation-on-agora | HMR | B-MPJPE: 180.5 B-MVE: 173.6 B-NMJE: 226.0 B-NMVE: 217.0 |
| monocular-3d-human-pose-estimation-on-human3 | HMR | Frames Needed: 1 Need Ground Truth 2D Pose: No Use Video Sequence: No |
| multi-hypotheses-3d-human-pose-estimation-on-2 | HMR | Best-Hypothesis MPJPE (n = 25): - Best-Hypothesis PMPJPE (n = 25): - H36M PMPJPE (n = 1): 56.8 H36M PMPJPE (n = 25): 56.8 Most-Likely Hypothesis PMPJPE (n = 1): - |
| multi-hypotheses-3d-human-pose-estimation-on-2 | HMR (2D Vis, by MHEntropy) | Best-Hypothesis MPJPE (n = 25): - Best-Hypothesis PMPJPE (n = 25): 85.2 H36M PMPJPE (n = 1): 67.4 H36M PMPJPE (n = 25): 67.4 Most-Likely Hypothesis PMPJPE (n = 1): 85.2 |
| weakly-supervised-3d-human-pose-estimation-on | Kanzawa et al. | 3D Annotations: No |