4 个月前

残差密集网络用于图像复原

残差密集网络用于图像复原

摘要

卷积神经网络(Convolutional Neural Network, CNN)在图像恢复(Image Restoration, IR)领域最近取得了显著的成功,并提供了层次化的特征。然而,大多数基于深度CNN的IR模型未能充分利用原始低质量图像中的层次化特征,因此其性能相对较低。本文提出了一种新颖的残差密集网络(Residual Dense Network, RDN),以解决IR中的这一问题。我们充分挖掘了所有卷积层中的层次化特征。具体而言,我们提出了残差密集块(Residual Dense Block, RDB),通过密集连接的卷积层提取丰富的局部特征。RDB进一步允许从前一个RDB的状态直接连接到当前RDB的所有层,从而形成一种连续的记忆机制。为了从先前和当前的局部特征中自适应地学习更有效的特征并稳定更宽网络的训练,我们在RDB中引入了局部特征融合。在完全获得密集的局部特征后,我们使用全局特征融合以整体的方式联合自适应地学习全局层次化特征。我们通过几个具有代表性的IR应用展示了RDN的有效性,包括单幅图像超分辨率、高斯图像去噪、图像压缩伪影减少和图像去模糊。基准数据集和真实世界数据集上的实验表明,我们的RDN在每个IR任务上均取得了优于现有最先进方法的定量和视觉效果。

代码仓库

基准测试

基准方法指标
color-image-denoising-on-bsd68-sigma10Residual Dense Network +
PSNR: 36.49
color-image-denoising-on-bsd68-sigma30Residual Dense Network +
PSNR: 30.7
color-image-denoising-on-bsd68-sigma70Residual Dense Network +
PSNR: 26.88
color-image-denoising-on-kodak24-sigma10Residual Dense Network +
PSNR: 37.33
color-image-denoising-on-kodak24-sigma30Residual Dense Network +
PSNR: 31.98
color-image-denoising-on-kodak24-sigma50Residual Dense Network +
PSNR: 29.7
color-image-denoising-on-kodak24-sigma70Residual Dense Network +
PSNR: 28.24
color-image-denoising-on-urban100-sigma10Residual Dense Network +
PSNR: 36.75
color-image-denoising-on-urban100-sigma30Residual Dense Network +
PSNR: 31.78
color-image-denoising-on-urban100-sigma50Residual Dense Network +
PSNR: 29.38
color-image-denoising-on-urban100-sigma70Residual Dense Network +
PSNR: 27.74
grayscale-image-denoising-on-bsd68-sigma10Residual Dense Network +
PSNR: 34.01
grayscale-image-denoising-on-bsd68-sigma30Residual Dense Network +
PSNR: 28.58
grayscale-image-denoising-on-bsd68-sigma50Residual Dense Network +
PSNR: 26.43
grayscale-image-denoising-on-bsd68-sigma70Residual Dense Network +
PSNR: 25.12
grayscale-image-denoising-on-kodak24-sigma10Residual Dense Network +
PSNR: 35.19
grayscale-image-denoising-on-kodak24-sigma30Residual Dense Network +
PSNR: 30.02
grayscale-image-denoising-on-kodak24-sigma50Residual Dense Network +
PSNR: 27.88
grayscale-image-denoising-on-kodak24-sigma70Residual Dense Network +
PSNR: 26.57
grayscale-image-denoising-on-urban100-sigma10Residual Dense Network +
PSNR: 35.45
grayscale-image-denoising-on-urban100-sigma30Residual Dense Network +
PSNR: 30.08
grayscale-image-denoising-on-urban100-sigma50Residual Dense Network +
PSNR: 27.47
grayscale-image-denoising-on-urban100-sigma70Residual Dense Network +
PSNR: 25.71
jpeg-artifact-correction-on-classic5-qualityResidual Dense Network +
PSNR: 30.03
SSIM: 0.8194
jpeg-artifact-correction-on-classic5-quality-1Residual Dense Network +
PSNR: 32.19
SSIM: 0.8704
jpeg-artifact-correction-on-classic5-quality-2Residual Dense Network +
PSNR: 33.46
SSIM: 0.8932
jpeg-artifact-correction-on-classic5-quality-3Residual Dense Network +
PSNR: 34.29
SSIM: 0.9063
jpeg-artifact-correction-on-live1-quality-10-1Residual Dense Network +
PSNR: 29.7
SSIM: 0.8252
jpeg-artifact-correction-on-live1-quality-20-1Residual Dense Network +
PSNR: 32.1
SSIM: 0.8886
jpeg-artifact-correction-on-live1-quality-30-1Residual Dense Network +
PSNR: 33.54
SSIM: 0.9156
jpeg-artifact-correction-on-live1-quality-40Residual Dense Network +
PSNR: 34.54
SSIM: 0.9304

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
残差密集网络用于图像复原 | 论文 | HyperAI超神经