
摘要
我们提出了一种新的图级表示学习方法,该方法可以将整个图嵌入到一个向量空间中,使得两个图的嵌入向量保持它们之间的图-图接近度。我们的方法称为UGRAPHEMB,是一个通用框架,提供了一种全新的完全无监督且归纳式的图级嵌入手段。所学的神经网络可以被视为一个函数,接收任意图作为输入(无论是在训练集中出现过的还是未出现过的),并将其转换为嵌入向量。我们还提出了一种新的图级嵌入生成机制——多尺度节点注意力(Multi-Scale Node Attention, MSNA)。在五个真实图数据集上的实验表明,UGRAPHEMB在图分类、相似性排序和图可视化任务中取得了具有竞争力的准确性。
代码仓库
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| graph-classification-on-imdb-m | UGraphEmb | Accuracy: 50.06% |
| graph-classification-on-imdb-m | UGraphEmb-F | Accuracy: 50.97% |
| graph-classification-on-nci109 | UGraphEmb | Accuracy: 69.17 |
| graph-classification-on-nci109 | UGraphEmb-F | Accuracy: 74.48 |
| graph-classification-on-ptc | UGraphEmb | Accuracy: 72.54% |
| graph-classification-on-ptc | UGraphEmb-F | Accuracy: 73.56% |
| graph-classification-on-reddit-multi-12k | UGraphEmb-F | Accuracy: 41.84 |
| graph-classification-on-reddit-multi-12k | UGraphEmb | Accuracy: 39.97 |
| graph-classification-on-web | UGraphEmb-F | Accuracy: 45.03 |