
摘要
人员重识别(re-id)由于不同摄像头之间存在显著的类内变化而仍然具有挑战性。近年来,越来越多的研究兴趣集中在使用生成模型来扩充训练数据并增强对输入变化的不变性。然而,现有方法中的生成流程与判别性的re-id学习阶段相对独立。因此,re-id模型通常以一种简单的方式在生成的数据上进行训练。本文旨在通过更好地利用生成数据来改进学习到的re-id嵌入。为此,我们提出了一种端到端的联合学习框架,将re-id学习和数据生成紧密结合在一起。我们的模型包括一个生成模块,该模块分别将每个人编码为外观代码和结构代码,以及一个判别模块,该模块与生成模块共享外观编码器。通过切换外观或结构代码,生成模块能够生成高质量的跨身份合成图像,并在线反馈给外观编码器,用于改进判别模块。所提出的联合学习框架在不使用生成数据的情况下显著提升了基线性能,并在多个基准数据集上达到了最先进的水平。
代码仓库
NVlabs/DG-Net
pytorch
GitHub 中提及
Demonhesusheng/Reid
pytorch
GitHub 中提及
jiangsikai/Person_reID_baseline_pytorch
pytorch
GitHub 中提及
taroogura/Person_reID_baseline_pytorch
pytorch
GitHub 中提及
layumi/DG-Net
pytorch
GitHub 中提及
WuRui-Ella/Myfirststore
pytorch
GitHub 中提及
youwenjing/reid_mgn-dgnet
pytorch
GitHub 中提及
lsh110600/person_re_id
pytorch
GitHub 中提及
wxb589/Person_reID_baseline_pytorch-master
pytorch
GitHub 中提及
ivychill/reid
pytorch
GitHub 中提及
layumi/Person_reID_baseline_pytorch
pytorch
GitHub 中提及
Proxim123/person-reID-No1-
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| person-re-identification-on-cuhk03 | DG-Net | MAP: 61.1 Rank-1: 65.6 |
| person-re-identification-on-dukemtmc-reid | DG-Net(RK) | Rank-1: 90.26 mAP: 88.31 |
| person-re-identification-on-dukemtmc-reid | DG-Net | Rank-1: 86.6 mAP: 74.8 |
| person-re-identification-on-market-1501 | DG-Net | Rank-1: 94.8 mAP: 86.0 |
| person-re-identification-on-market-1501 | DG-Net(RK) | Rank-1: 95.4 mAP: 92.49 |
| person-re-identification-on-market-1501-c | DG-Net | Rank-1: 31.75 mAP: 9.96 mINP: 0.35 |
| person-re-identification-on-msmt17 | DG-Net | Rank-1: 77.2 Rank-10: 90.5 Rank-5: 87.4 mAP: 52.3 |
| person-re-identification-on-uav-human | DG-Net | Rank-1: 65.81 Rank-5: 85.71 mAP: 61.97 |
| unsupervised-domain-adaptation-on-duke-to | DG-Net | mAP: 26.83 rank-1: 56.12 rank-10: 78.12 rank-5: 72.18 |
| unsupervised-domain-adaptation-on-duke-to-1 | DG-Net | mAP: 6.35 rank-1: 20.59 rank-10: 37.04 rank-5: 31.67 |
| unsupervised-domain-adaptation-on-market-to | DG-Net | mAP: 24.25 rank-1: 42.62 rank-10: 64.63 rank-5: 58.57 |
| unsupervised-domain-adaptation-on-market-to-1 | DG-Net | mAP: 5.41 rank-1: 17.11 rank-10: 31.62 rank-5: 26.66 |
| unsupervised-person-re-identification-on | DGNet | Rank-1: 42.62 Rank-10: 64.63 Rank-5: 58.57 mAP: 24.25 |
| unsupervised-person-re-identification-on-1 | DGNet | Rank-1: 56.12 Rank-10: 72.18 Rank-5: 78.12 mAP: 26.83 |
| unsupervised-person-re-identification-on-2 | DG-Net | Rank-1: 17.11 Rank-10: 26.66 Rank-5: 31.62 mAP: 5.41 |
| unsupervised-person-re-identification-on-3 | DGNet | Rank-1: 20.59 Rank-10: 31.67 Rank-5: 37.04 mAP: 6.35 |
| unsupervised-person-re-identification-on-6 | DGNet | Rank-1: 61.89 Rank-10: 75.81 Rank-5: 80.34 mAP: 40.69 |
| unsupervised-person-re-identification-on-7 | DG-Net | Rank-1: 61.76 Rank-10: 83.25 Rank-5: 77.67 mAP: 33.62 |