4 个月前

MixHop:通过稀疏化邻域混合实现的高阶图卷积架构

MixHop:通过稀疏化邻域混合实现的高阶图卷积架构

摘要

现有的半监督学习图神经网络(如图卷积网络)方法已被证明无法学习一类广泛的邻域混合关系。为了解决这一弱点,我们提出了一种新的模型——MixHop,该模型可以通过反复混合不同距离邻居的特征表示来学习这些关系,包括差分算子。MixHop 不需要额外的内存或计算复杂度,并且在具有挑战性的基准测试中表现出色。此外,我们提出了稀疏正则化方法,使得我们可以可视化网络在不同图数据集上如何优先处理邻域信息。对所学架构的分析表明,邻域混合在不同的数据集中有所差异。

代码仓库

基准测试

基准方法指标
node-classification-on-actorMixHop
Accuracy: 32.22 ± 2.34
node-classification-on-chameleonMixHop
Accuracy: 60.50 ± 2.53
node-classification-on-chameleon-60-20-20MixHop
1:1 Accuracy: 36.28 ± 10.22
node-classification-on-citeseerMixHop
Accuracy: 71.4%
Training Split: 20 per node
Validation: YES
node-classification-on-citeseer-48-32-20MixHop
1:1 Accuracy: 76.26 ± 1.33
node-classification-on-citeseer-60-20-20MixHop
1:1 Accuracy: 49.52 ± 13.35
node-classification-on-coraMixHop
Accuracy: 81.9%
Training Split: 20 per node
Validation: YES
node-classification-on-cora-48-32-20-fixedMixHop
1:1 Accuracy: 87.61 ± 0.85
node-classification-on-cora-60-20-20-randomMixHop
1:1 Accuracy: 65.65 ± 11.31
node-classification-on-cornellMixHop
Accuracy: 73.51 ± 6.34
node-classification-on-cornell-60-20-20MixHop
1:1 Accuracy: 60.33 ± 28.53
node-classification-on-film-60-20-20-randomMixHop
1:1 Accuracy: 33.13 ± 2.40
node-classification-on-geniusMixHop
Accuracy: 90.58 ± 0.16
node-classification-on-non-homophilicMixHop
1:1 Accuracy: 60.33 ± 28.53
node-classification-on-non-homophilic-1MixHop
1:1 Accuracy: 77.25 ± 7.80
node-classification-on-non-homophilic-10MixHop
1:1 Accuracy: 32.22 ± 2.34
node-classification-on-non-homophilic-11MixHop
1:1 Accuracy: 60.50 ± 2.53 
node-classification-on-non-homophilic-12MixHop
1:1 Accuracy:  43.80 ± 1.48 
node-classification-on-non-homophilic-13MixHop
1:1 Accuracy: 83.47 ± 0.71
node-classification-on-non-homophilic-14MixHop
1:1 Accuracy: 90.58 ± 0.16
node-classification-on-non-homophilic-15MixHop
1:1 Accuracy: 65.64 ± 0.27
node-classification-on-non-homophilic-2MixHop
1:1 Accuracy: 76.39 ± 7.66
node-classification-on-non-homophilic-4MixHop
1:1 Accuracy: 36.28 ± 10.22
node-classification-on-non-homophilic-6MixHop
1:1 Accuracy: 66.80±0.58
node-classification-on-non-homophilic-7MixHop
1:1 Accuracy: 73.51 ± 6.34 
node-classification-on-non-homophilic-8MixHop
1:1 Accuracy: 75.88 ± 4.90 
node-classification-on-non-homophilic-9MixHop
1:1 Accuracy: 77.84 ± 7.73 
node-classification-on-penn94MixHop
Accuracy: 83.47 ± 0.71
node-classification-on-pubmedMixHop
Accuracy: 80.8%
Training Split: 20 per node
Validation: YES
node-classification-on-pubmed-48-32-20-fixedMixHop
1:1 Accuracy: 85.31 ± 0.61
node-classification-on-pubmed-60-20-20-randomMixHop
1:1 Accuracy: 87.04 ± 4.10
node-classification-on-squirrelMixHop
Accuracy: 43.80 ± 1.48
node-classification-on-squirrel-60-20-20MixHop
1:1 Accuracy: 24.55 ± 2.60
node-classification-on-texasMixHop
Accuracy: 77.84 ± 7.73
node-classification-on-texas-60-20-20-randomMixHop
1:1 Accuracy: 76.39 ± 7.66
node-classification-on-wisconsinMixHop
Accuracy: 75.88 ± 4.90
node-classification-on-wisconsin-60-20-20MixHop
1:1 Accuracy: 77.25 ± 7.80

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
MixHop:通过稀疏化邻域混合实现的高阶图卷积架构 | 论文 | HyperAI超神经