4 个月前

S4L: 自监督半监督学习

S4L: 自监督半监督学习

摘要

这项研究致力于解决图像分类器的半监督学习问题。我们的主要见解是,半监督学习领域可以从快速发展的自监督视觉表示学习领域中获益。通过统一这两种方法,我们提出了自监督半监督学习框架,并利用该框架推导出两种新颖的半监督图像分类方法。我们展示了这些方法在与精心调校的基线模型以及现有的半监督学习方法相比时的有效性。此外,我们还证明了我们的方法可以与现有的半监督学习方法联合训练,从而在仅使用10%标签的情况下,在ILSVRC-2012数据集上取得了新的半监督学习最佳结果。

代码仓库

google-research/s4l
tf
GitHub 中提及

基准测试

基准方法指标
semi-supervised-image-classification-on-1Rotation
Top 5 Accuracy: 45.11%
semi-supervised-image-classification-on-1Exemplar (joint training)
Top 5 Accuracy: 47.02%
semi-supervised-image-classification-on-1Exemplar
Top 5 Accuracy: 44.90%
semi-supervised-image-classification-on-1Rotation (joint training)
Top 5 Accuracy: 53.37%
semi-supervised-image-classification-on-1VAT
Top 5 Accuracy: 44.05%
semi-supervised-image-classification-on-1Pseudolabeling
Top 5 Accuracy: 51.56%
semi-supervised-image-classification-on-1VAT + Entropy Minimization
Top 5 Accuracy: 46.96%
semi-supervised-image-classification-on-2Pseudolabeling
Top 5 Accuracy: 82.41%
semi-supervised-image-classification-on-2VAT + Entropy Minimization (ResNet-50)
Top 5 Accuracy: 83.39%
semi-supervised-image-classification-on-2VAT
Top 5 Accuracy: 82.78%
semi-supervised-image-classification-on-2Exemplar Fine-tuned (ResNet-50)
Top 5 Accuracy: 81.01%
semi-supervised-image-classification-on-2Exemplar
Top 5 Accuracy: 81.01%
semi-supervised-image-classification-on-2Rotation Fine-tuned (ResNet-50)
Top 5 Accuracy: 78.53%
semi-supervised-image-classification-on-2S4L-MOAM (ResNet-50 4×)
Top 1 Accuracy: 73.21%
Top 5 Accuracy: 91.23%
semi-supervised-image-classification-on-2Rotation + VAT + Ent. Min.
Top 5 Accuracy: 91.23%
semi-supervised-image-classification-on-2S4L-Rotation (ResNet-50)
Top 5 Accuracy: 83.82%
semi-supervised-image-classification-on-2S4L-Exemplar (ResNet-50)
Top 5 Accuracy: 83.72%
semi-supervised-image-classification-on-2VAT (ResNet-50)
Top 5 Accuracy: 82.78%
semi-supervised-image-classification-on-2VAT + Entropy Minimization
Top 5 Accuracy: 83.39%
semi-supervised-image-classification-on-2Rotation
Top 5 Accuracy: 78.53%
semi-supervised-image-classification-on-2Exemplar (joint training)
Top 5 Accuracy: 83.72%
semi-supervised-image-classification-on-2Pseudolabeling (ResNet-50)
Top 5 Accuracy: 82.41%

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
S4L: 自监督半监督学习 | 论文 | HyperAI超神经