4 个月前

EfficientNet:重新思考卷积神经网络的模型缩放

EfficientNet:重新思考卷积神经网络的模型缩放

摘要

卷积神经网络(ConvNets)通常在固定的资源预算下开发,然后在有更多资源可用时进行扩展以提高精度。本文系统地研究了模型扩展,并发现仔细平衡网络深度、宽度和分辨率可以带来更好的性能。基于这一观察,我们提出了一种新的扩展方法,该方法使用一个简单但非常有效的复合系数来均匀地扩展深度、宽度和分辨率的所有维度。我们在扩大MobileNets和ResNet方面展示了这种方法的有效性。为了进一步提升性能,我们利用神经架构搜索设计了一个新的基线网络,并将其扩展以获得一系列模型,称为EfficientNets,这些模型在准确性和效率上均显著优于以往的ConvNets。特别是,我们的EfficientNet-B7在ImageNet数据集上达到了最先进的84.3%的Top-1精度,同时其规模比现有的最佳ConvNet小8.4倍,推理速度也快6.1倍。此外,我们的EfficientNets在网络迁移学习中表现优异,在CIFAR-100(91.7%)、Flowers(98.8%)和其他三个迁移学习数据集上均达到了最先进的精度,参数量却减少了数量级。源代码位于https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet。

代码仓库

rwightman/efficientnet-jax
jax
GitHub 中提及
amirdy/dog-breed-classification
pytorch
GitHub 中提及
lukemelas/EfficientNet-PyTorch
pytorch
GitHub 中提及
facebookresearch/pycls
pytorch
GitHub 中提及
clovaai/rexnet
pytorch
GitHub 中提及
james77777778/keras-image-models
pytorch
GitHub 中提及
toanbkmt/EfficientnetFruitDetect
pytorch
GitHub 中提及
mnikitin/EfficientNet
mxnet
GitHub 中提及
pikkaay/efficientnet_gpu
tf
GitHub 中提及
lpirola13/flower_recognizer
tf
GitHub 中提及
maxwelltsai/DeepGalaxy
tf
GitHub 中提及
rwightman/pytorch-image-models
pytorch
GitHub 中提及
wusaifei/HWCC_image_classification
pytorch
GitHub 中提及
lvweiwolf/efficientdet
tf
GitHub 中提及
denizyuret/playground
pytorch
GitHub 中提及
hyang0129/foodclassapp
tf
GitHub 中提及
jaketae/mlp-mixer
pytorch
GitHub 中提及
filaPro/visda2019
tf
GitHub 中提及
miramind/efficientnets_pytorch
pytorch
GitHub 中提及
federicopozzi33/MobileOne-PyTorch
pytorch
GitHub 中提及
Cyprien0105/DataScience
GitHub 中提及
lpirola13/flower-recognizer
tf
GitHub 中提及
christiansafka/img2vec
pytorch
GitHub 中提及
isaachaw/GrabCarRecognition
pytorch
GitHub 中提及
DeepBrainsMe/FSnet
pytorch
GitHub 中提及
facebookresearch/ClassyVision
pytorch
GitHub 中提及
qubvel/efficientnet
tf
GitHub 中提及
JoegameZhou/efficientnet-b0
mindspore
GitHub 中提及
IMvision12/keras-vision-models
pytorch
GitHub 中提及
BobMcDear/pytorch-efficientnet
pytorch
GitHub 中提及
abhuse/pytorch-efficientnet
pytorch
GitHub 中提及
xslidi/EfficientNets_ddl_apex
pytorch
GitHub 中提及
iamilyasedunov/key_word_spotting
pytorch
GitHub 中提及
Jmak12/Iris1
pytorch
GitHub 中提及
mingxingtan/efficientnet
tf
GitHub 中提及
asad-62/IVP-DNN
tf
GitHub 中提及
osmr/imgclsmob
mxnet
GitHub 中提及
rwightman/gen-efficientnet-pytorch
pytorch
GitHub 中提及
jason90330/EdgeFinal
pytorch
GitHub 中提及
BenjiKCF/EfficientNet
GitHub 中提及
luuchung/cifar-100
GitHub 中提及
canturan10/satellighte
pytorch
GitHub 中提及
epoc88/PFLD_68pts_Pytorch_2020
mxnet
GitHub 中提及
zsef123/EfficientNets-PyTorch
pytorch
GitHub 中提及
lyqcom/efficientnet
mindspore
GitHub 中提及
WonJunPark/Efficientnet
GitHub 中提及
setharram/facenet
tf
GitHub 中提及
semskurto/APTOS
GitHub 中提及
PotatoSpudowski/CactiNet
pytorch
GitHub 中提及
maragori/DeepfakeForensics-v1
pytorch
GitHub 中提及
HyeonhoonLee/MAIC2021_Sleep
pytorch
GitHub 中提及
TravisLeeTS/grabcvchallenge
tf
GitHub 中提及
ultralytics/yolov5
pytorch
GitHub 中提及
Legoons/Melanoma_classification
pytorch
GitHub 中提及
chrisqqq123/FA-Dist-EfficientNet
pytorch
GitHub 中提及
gomezzz/distmsmatch
pytorch
GitHub 中提及
Deci-AI/super-gradients
pytorch
GitHub 中提及
HO4X/TSR_JetsonTX2
GitHub 中提及
ckyrkou/EmergencyNet
tf
GitHub 中提及
SunDoge/efficientnet-pytorch
pytorch
GitHub 中提及
vladthesav/MoldAI
pytorch
GitHub 中提及
open-edge-platform/geti
pytorch
GitHub 中提及
armin-azh/3DefficientNet
tf
GitHub 中提及
Jintao-Huang/EfficientNet_PyTorch
pytorch
GitHub 中提及
gomezzz/MSMatch
pytorch
GitHub 中提及
js-aguiar/wheat-object-detection
pytorch
GitHub 中提及
SifatMd/Research-Papers
GitHub 中提及
6210612757/facerecognition
tf
GitHub 中提及
narumiruna/efficientnet-pytorch
pytorch
GitHub 中提及

基准测试

基准方法指标
domain-generalization-on-vizwizEfficientNet-B4
Accuracy - All Images: 41.7
Accuracy - Clean Images: 46.4
Accuracy - Corrupted Images: 35.6
domain-generalization-on-vizwizEfficientNet-B2
Accuracy - All Images: 38.1
Accuracy - Clean Images: 42.8
Accuracy - Corrupted Images: 31.4
domain-generalization-on-vizwizEfficientNet-B1
Accuracy - All Images: 36.7
Accuracy - Clean Images: 41.5
Accuracy - Corrupted Images: 30.9
domain-generalization-on-vizwizEfficientNet-B5
Accuracy - All Images: 42.8
Accuracy - Clean Images: 47.3
Accuracy - Corrupted Images: 37
domain-generalization-on-vizwizEfficientNet-B3
Accuracy - All Images: 40.7
Accuracy - Clean Images: 45.3
Accuracy - Corrupted Images: 34.2
domain-generalization-on-vizwizEfficientNet-B0
Accuracy - All Images: 34.2
Accuracy - Clean Images: 38.4
Accuracy - Corrupted Images: 27.4
fine-grained-image-classification-on-birdsnapEfficientNet-B7
Accuracy: 84.3%
fine-grained-image-classification-on-fgvcEfficientNet-B7
Accuracy: 92.9
fine-grained-image-classification-on-food-101EfficientNet-B7
Accuracy: 93.0
fine-grained-image-classification-on-oxford-1EfficientNet-B7
Accuracy: 95.4%
fine-grained-image-classification-on-stanfordEfficientNet-B7
Accuracy: 94.7%
image-classification-on-cifar-10EfficientNet-B7
Percentage correct: 98.9
image-classification-on-cifar-100EfficientNet-B7
PARAMS: 64M
Percentage correct: 91.7
image-classification-on-flowers-102EfficientNet-B7
Accuracy: 98.8%
image-classification-on-gashissdbEfficientNet-b0
Accuracy: 98.11
F1-Score: 99.01
Precision: 99.94
image-classification-on-imagenetEfficientNet-B7
GFLOPs: 37
Number of params: 66M
Top 1 Accuracy: 84.4%
image-classification-on-imagenetEfficientNet-B2
GFLOPs: 1
Number of params: 9.2M
Top 1 Accuracy: 79.8%
image-classification-on-imagenetEfficientNet-B3
Number of params: 12M
Top 1 Accuracy: 81.1%
image-classification-on-imagenetEfficientNet-B0
GFLOPs: 0.39
Number of params: 5.3M
Top 1 Accuracy: 76.3%
image-classification-on-imagenetEfficientNet-B6
GFLOPs: 19
Number of params: 43M
Top 1 Accuracy: 84%
image-classification-on-imagenetEfficientNet-B4
GFLOPs: 4.2
Number of params: 19M
Top 1 Accuracy: 82.6%
image-classification-on-imagenetEfficientNet-B1
GFLOPs: 0.7
Number of params: 7.8M
Top 1 Accuracy: 78.8%
image-classification-on-imagenetEfficientNet-B5
GFLOPs: 9.9
Number of params: 30M
Top 1 Accuracy: 83.3%
image-classification-on-omnibenchmarkEfficientNetB4
Average Top-1 Accuracy: 35.8
medical-image-classification-on-nct-crc-heEfficientnet-b0
Accuracy (%): 95.59
F1-Score: 97.48
Precision: 99.89
Specificity: 99.45

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
EfficientNet:重新思考卷积神经网络的模型缩放 | 论文 | HyperAI超神经