4 个月前

打破天花板:更强的多尺度深度图卷积网络

打破天花板:更强的多尺度深度图卷积网络

摘要

近日,基于神经网络的方法在解决大规模、复杂、图结构问题方面取得了显著进展。然而,这些方法仍然存在瓶颈,且多尺度信息和深度架构的优势尚未得到充分挖掘。本文从理论上分析了现有的图卷积网络(Graph Convolutional Networks, GCNs)由于激活函数和架构的限制而表现出的表达能力有限的问题。我们通过块克里洛夫子空间形式对谱图卷积和深度GCN进行了推广,并设计了两种架构,这两种架构都具有潜在的深度扩展能力,但它们以不同的方式利用多尺度信息。此外,我们在特定条件下证明了这两种架构的等价性。在多个节点分类任务中,无论是否借助验证集的帮助,这两种新架构的表现均优于许多现有先进方法。

代码仓库

PwnerHarry/Stronger_GCN
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
node-classification-on-chameleon-60-20-20Snowball-3
1:1 Accuracy: 65.49 ± 1.64
node-classification-on-chameleon-60-20-20Snowball-2
1:1 Accuracy: 64.99 ± 2.39
node-classification-on-citeseer-05Snowball (linear + tanh)
Accuracy: 61.99%
node-classification-on-citeseer-05Snowball (tanh)
Accuracy: 62.05%
node-classification-on-citeseer-05Truncated Krylov
Accuracy: 64.64%
node-classification-on-citeseer-05Snowball (linear)
Accuracy: 59.41%
node-classification-on-citeseer-1Truncated Krylov
Accuracy: 69.03%
node-classification-on-citeseer-1Snowball (tanh)
Accuracy: 64.23%
node-classification-on-citeseer-1Snowball (linear + tanh)
Accuracy: 67.07%
node-classification-on-citeseer-1Snowball (linear)
Accuracy: 65.85%
node-classification-on-citeseer-60-20-20Snowball-2
1:1 Accuracy: 81.53 ± 1.71
node-classification-on-citeseer-60-20-20Snowball-3
1:1 Accuracy: 80.93 ± 1.32
node-classification-on-citeseer-with-publicSnowball (tanh)
Accuracy: 73.32%
node-classification-on-citeseer-with-publicSnowball (linear)
Accuracy: 72.85%
node-classification-on-citeseer-with-publicTruncated Krylov
Accuracy: 73.86%
node-classification-on-cora-05Snowball (linear + tanh)
Accuracy: 67.76%
node-classification-on-cora-05Snowball (tanh)
Accuracy: 71.36%
node-classification-on-cora-05Snowball (linear)
Accuracy: 69.99%
node-classification-on-cora-05Truncated Krylov
Accuracy: 74.89%
node-classification-on-cora-1Snowball (tanh)
Accuracy: 74.78%
node-classification-on-cora-1Snowball (linear)
Accuracy: 73.10%
node-classification-on-cora-1Snowball (linear + tanh)
Accuracy: 74.79%
node-classification-on-cora-1Truncated Krylov
Accuracy: 78.15%
node-classification-on-cora-3Truncated Krylov
Accuracy: 81.92%
node-classification-on-cora-3Snowball (linear + tanh)
Accuracy: 79.52%
node-classification-on-cora-3Snowball (linear)
Accuracy: 80.96%
node-classification-on-cora-3Snowball (tanh)
Accuracy: 80.72%
node-classification-on-cora-60-20-20-randomSnowball-2
1:1 Accuracy: 88.64 ± 1.15
node-classification-on-cora-60-20-20-randomSnowball-3
1:1 Accuracy: 89.33 ± 1.3
node-classification-on-cora-with-public-splitSnowball (linear)
Accuracy: 83.26%
node-classification-on-cora-with-public-splitSnowball (tanh)
Accuracy: 83.19%
node-classification-on-cora-with-public-splitTruncated Krylov
Accuracy: 83.16%
node-classification-on-cornell-60-20-20Snowball-3
1:1 Accuracy: 82.95 ± 2.1
node-classification-on-cornell-60-20-20Snowball-2
1:1 Accuracy: 82.62 ± 2.34
node-classification-on-film-60-20-20-randomSnowball-3
1:1 Accuracy: 36.00 ± 1.36
node-classification-on-film-60-20-20-randomSnowball-2
1:1 Accuracy: 35.97 ± 0.66
node-classification-on-non-homophilicSnowball-3
1:1 Accuracy: 82.95 ± 2.1
node-classification-on-non-homophilicSnowball-2
1:1 Accuracy: 82.62 ± 2.34
node-classification-on-non-homophilic-1Snowball-2
1:1 Accuracy: 74.88 ± 3.42
node-classification-on-non-homophilic-1Snowball-3
1:1 Accuracy: 69.5 ± 5.01
node-classification-on-non-homophilic-2Snowball-3
1:1 Accuracy: 83.11 ± 3.2
node-classification-on-non-homophilic-2Snowball-2
1:1 Accuracy: 83.11 ± 3.2
node-classification-on-non-homophilic-4Snowball-3
1:1 Accuracy: 65.49 ± 1.64
node-classification-on-non-homophilic-4Snowball-2
1:1 Accuracy: 64.99 ± 2.39
node-classification-on-pubmed-003Truncated Krylov
Accuracy: 71.11%
node-classification-on-pubmed-003Snowball (tanh)
Accuracy: 62.61%
node-classification-on-pubmed-003Snowball (linear + tanh)
Accuracy: 61.94%
node-classification-on-pubmed-003Snowball (linear)
Accuracy: 68.12%
node-classification-on-pubmed-005Snowball (linear + tanh)
Accuracy: 69.45%
node-classification-on-pubmed-005Truncated Krylov
Accuracy: 72.57%
node-classification-on-pubmed-005Snowball (linear)
Accuracy: 70.04%
node-classification-on-pubmed-005Snowball (tanh)
Accuracy: 68.99%
node-classification-on-pubmed-01Truncated Krylov
Accuracy: 77.21%
node-classification-on-pubmed-01Snowball (linear + tanh)
Accuracy: 75.30%
node-classification-on-pubmed-01Snowball (tanh)
Accuracy: 74.40%
node-classification-on-pubmed-01Snowball (linear)
Accuracy: 73.83%
node-classification-on-pubmed-60-20-20-randomSnowball-3
1:1 Accuracy: 88.8 ± 0.82
node-classification-on-pubmed-60-20-20-randomSnowball-2
1:1 Accuracy: 89.04 ± 0.49
node-classification-on-pubmed-with-publicTruncated Krylov
Accuracy: 81.7%
node-classification-on-pubmed-with-publicSnowball (linear)
Accuracy: 79.10%
node-classification-on-pubmed-with-publicSnowball (tanh)
Accuracy: 79.16%
node-classification-on-squirrel-60-20-20Snowball-2
1:1 Accuracy: 47.88 ± 1.23
node-classification-on-squirrel-60-20-20Snowball-3
1:1 Accuracy: 48.25 ± 0.94
node-classification-on-texas-60-20-20-randomSnowball-2
1:1 Accuracy: 83.11 ± 3.2
node-classification-on-texas-60-20-20-randomSnowball-3
1:1 Accuracy: 83.11 ± 3.2
node-classification-on-wisconsin-60-20-20Snowball-3
1:1 Accuracy: 69.5 ± 5.01
node-classification-on-wisconsin-60-20-20Snowball-2
1:1 Accuracy: 74.88 ± 3.42

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
打破天花板:更强的多尺度深度图卷积网络 | 论文 | HyperAI超神经