
摘要
对抗训练生成模型(GANs)最近在图像合成方面取得了令人信服的结果。然而,尽管早期在无监督表示学习中使用GANs取得了一定的成功,但随后它们被基于自监督的方法所取代。在这项工作中,我们展示了图像生成质量的进步可以显著提高表示学习的性能。我们的方法BigBiGAN建立在最先进的BigGAN模型基础上,通过添加编码器并修改判别器将其扩展到表示学习。我们对这些BigBiGAN模型的表示学习和生成能力进行了广泛的评估,证明了这些基于生成的模型在ImageNet上的无监督表示学习以及无条件图像生成方面均达到了当前最佳水平。预训练的BigBiGAN模型——包括图像生成器和编码器——可在TensorFlow Hub上获取(https://tfhub.dev/s?publisher=deepmind&q=bigbigan)。
代码仓库
rkorzeniowski/bigbigan-pytorch
pytorch
GitHub 中提及
LEGO999/BigBiGAN-TensorFlow2.0
tf
GitHub 中提及
lukemelas/unsupervised-image-segmentation
pytorch
GitHub 中提及
LEGO999/BIgBiGAN
tf
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| contrastive-learning-on-imagenet-1k | ResNet50 (4×) | ImageNet Top-1 Accuracy: 61.3 |
| self-supervised-image-classification-on | BigBiGAN (ResNet-50) | Number of Params: 25M Top 1 Accuracy: 55.4% Top 5 Accuracy: 77.4% |
| self-supervised-image-classification-on | BigBiGAN (RevNet-50 ×4, BN+CReLU) | Number of Params: 86M Top 1 Accuracy: 61.3% Top 5 Accuracy: 81.9% |
| self-supervised-image-classification-on | BigBiGAN (RevNet-50 ×4) | Number of Params: 86M Top 1 Accuracy: 60.8% Top 5 Accuracy: 81.4% |
| self-supervised-image-classification-on | BigBiGAN (ResNet-50, BN+CReLU) | Number of Params: 24M Top 1 Accuracy: 56.6% Top 5 Accuracy: 78.6% |
| semi-supervised-image-classification-on-1 | BigBiGAN (RevNet-50 ×4, BN+CReLU) | Top 5 Accuracy: 55.2% |
| semi-supervised-image-classification-on-2 | BigBiGAN (RevNet-50 ×4, BN+CReLU) | Top 5 Accuracy: 78.8% |