
摘要
我们提出了一种新的两阶段3D目标检测框架,命名为稀疏到密集3D目标检测器(Sparse-to-Dense 3D Object Detector,简称STD)。第一阶段是一个自底向上的提案生成网络,该网络以原始点云作为输入,通过为每个点分配一个新的球形锚点来生成精确的提案。与先前的工作相比,该方法在减少计算量的同时实现了较高的召回率。随后,应用PointsPool对提案特征进行生成,通过将内部点特征从稀疏表示转换为紧凑表示,进一步节省了计算时间。在第二阶段的框预测中,我们实现了一个并行的交并比(Intersection-over-Union, IoU)分支,以提高对定位精度的感知能力,从而进一步提升了性能。我们在KITTI数据集上进行了实验,并从3D目标检测和鸟瞰图(Bird's Eye View, BEV)检测两个方面评估了我们的方法。实验结果表明,我们的方法大幅超越了其他最先进方法,尤其是在困难数据集上表现突出,并且推理速度超过10帧每秒(FPS)。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| 3d-object-detection-on-kitti-cars-easy | STD | AP: 86.61% |
| 3d-object-detection-on-kitti-cars-hard | STD | AP: 76.06% |
| 3d-object-detection-on-kitti-cyclists | STD | AP: 62.53% |
| 3d-object-detection-on-kitti-cyclists-easy | STD | AP: 78.89% |
| 3d-object-detection-on-kitti-cyclists-hard | STD | AP: 55.77% |
| 3d-object-detection-on-kitti-pedestrians | STD | AP: 44.24% |
| 3d-object-detection-on-kitti-pedestrians-easy | STD | AP: 53.08% |
| 3d-object-detection-on-kitti-pedestrians-hard | STD | AP: 41.97% |
| birds-eye-view-object-detection-on-kitti | STD | AP: 65.32% |
| birds-eye-view-object-detection-on-kitti-1 | STD | AP: 51.39% |
| birds-eye-view-object-detection-on-kitti-16 | STD | AP: 60.99 |
| birds-eye-view-object-detection-on-kitti-17 | STD | AP: 45.89 |
| birds-eye-view-object-detection-on-kitti-8 | STD | AP: 81.04 |
| birds-eye-view-object-detection-on-kitti-9 | STD | AP: 57.85 |
| birds-eye-view-object-detection-on-kitti-cars | STD | AP: 87.76% |
| birds-eye-view-object-detection-on-kitti-cars-4 | STD | AP: 89.66 |
| birds-eye-view-object-detection-on-kitti-cars-5 | STD | AP: 86.89 |