4 个月前

ERNIE 2.0:一种持续预训练的语言理解框架

ERNIE 2.0:一种持续预训练的语言理解框架

摘要

近期,预训练模型在各种语言理解任务中取得了最先进的成果,这表明在大规模语料库上进行预训练可能在自然语言处理中发挥关键作用。当前的预训练流程通常专注于通过几个简单的任务来掌握词汇或句子的共现情况。然而,除了共现之外,训练语料库中还存在其他有价值的词汇、句法和语义信息,例如命名实体、语义接近度和篇章关系。为了最大限度地从训练语料库中提取词汇、句法和语义信息,我们提出了一种持续预训练框架,称为 ERNIE 2.0,该框架通过不断的多任务学习逐步构建并学习预训练任务。实验结果表明,ERNIE 2.0 在包括 GLUE 基准测试中的英语任务和几个常见的中文任务在内的 16 项任务上优于 BERT 和 XLNet。源代码和预训练模型已发布在 https://github.com/PaddlePaddle/ERNIE。

基准测试

基准方法指标
chinese-named-entity-recognition-on-msraERNIE 2.0 Base
F1: 93.8
chinese-named-entity-recognition-on-msraERNIE 2.0 Large
F1: 95
chinese-named-entity-recognition-on-msra-devERNIE 2.0 Large
F1: 96.3
chinese-named-entity-recognition-on-msra-devERNIE 2.0 Base
F1: 95.2
linguistic-acceptability-on-colaERNIE 2.0 Large
Accuracy: 63.5%
linguistic-acceptability-on-colaERNIE 2.0 Base
Accuracy: 55.2%
natural-language-inference-on-multinliERNIE 2.0 Large
Matched: 88.7
Mismatched: 88.8
natural-language-inference-on-multinliERNIE 2.0 Base
Matched: 86.1
Mismatched: 85.5
natural-language-inference-on-qnliERNIE 2.0 Large
Accuracy: 94.6%
natural-language-inference-on-qnliERNIE 2.0 Base
Accuracy: 92.9%
natural-language-inference-on-rteERNIE 2.0 Base
Accuracy: 74.8%
natural-language-inference-on-rteERNIE 2.0 Large
Accuracy: 80.2%
natural-language-inference-on-wnliERNIE 2.0 Large
Accuracy: 67.8
natural-language-inference-on-xnli-chineseERNIE 2.0 Base
Accuracy: 81.2
natural-language-inference-on-xnli-chineseERNIE 2.0 Large
Accuracy: 82.6
natural-language-inference-on-xnli-chinese-1ERNIE 2.0 Base
Accuracy: 79.7
natural-language-inference-on-xnli-chinese-1ERNIE 2.0 Large
Accuracy: 81
open-domain-question-answering-on-dureaderERNIE 2.0 Base
EM: 61.3
open-domain-question-answering-on-dureaderERNIE 2.0 Large
EM: 64.2
question-answering-on-quora-question-pairsERNIE 2.0 Large
Accuracy: 90.1%
question-answering-on-quora-question-pairsERNIE 2.0 Base
Accuracy: 89.8%
semantic-textual-similarity-on-mrpcERNIE 2.0 Base
Accuracy: 86.1%
semantic-textual-similarity-on-mrpcERNIE 2.0 Large
Accuracy: 87.4%
semantic-textual-similarity-on-sts-benchmarkERNIE 2.0 Large
Pearson Correlation: 0.912
semantic-textual-similarity-on-sts-benchmarkERNIE 2.0 Base
Pearson Correlation: 0.876
sentiment-analysis-on-sst-2-binaryERNIE 2.0 Base
Accuracy: 95

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
ERNIE 2.0:一种持续预训练的语言理解框架 | 论文 | HyperAI超神经