
摘要
从光谱域光学相干断层扫描(Spectral Domain Optical Coherence Tomography, SD-OCT)图像中诊断不同的视网膜疾病是一项具有挑战性的任务。为了早期检测和诊断视网膜疾病,已经采用了多种自动化方法,如图像处理、机器学习和深度学习算法。然而,这些方法容易出错且计算效率低下,需要人类专家进一步介入。在本文中,我们提出了一种新型卷积神经网络架构,能够成功区分视网膜各层的不同退行性变化及其潜在原因。所提出的新型架构在解决梯度爆炸问题的同时,优于其他分类模型。我们的方法对两个独立可用的视网膜SD-OCT数据集分别达到了接近完美的99.8%和100%的准确率。此外,我们的架构能够在实时预测视网膜疾病方面超越人类诊断医生的表现。
代码仓库
SharifAmit/OCT_Classification
官方
tf
GitHub 中提及
SharifAmit/OpticNet-71
tf
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| retinal-oct-disease-classification-on | Karri et al. | Acc: 96 |
| retinal-oct-disease-classification-on | Lee et al. | Acc: 87.63 |
| retinal-oct-disease-classification-on | MobileNet-v2 | Acc: 97.46 |
| retinal-oct-disease-classification-on | OpticNet-71 | Acc: 100 |
| retinal-oct-disease-classification-on | Awais et al. | Acc: 93 |
| retinal-oct-disease-classification-on | Xception | Acc: 99.36 |
| retinal-oct-disease-classification-on | ResNet50-v1 | Acc: 94.92 |
| retinal-oct-disease-classification-on-oct2017 | MobileNet-v2 | Acc: 99.4 Sensitivity: 99.4 |
| retinal-oct-disease-classification-on-oct2017 | Xception | Acc: 99.7 Sensitivity: 99.7 |
| retinal-oct-disease-classification-on-oct2017 | ResNet50-v1 | Acc: 99.3 Sensitivity: 99.3 |
| retinal-oct-disease-classification-on-oct2017 | OpticNet-71 | Acc: 99.8 Sensitivity: 99.8 |
| retinal-oct-disease-classification-on-oct2017 | InceptionV3 (limited) | Acc: 93.4 Sensitivity: 96.6 |
| retinal-oct-disease-classification-on-oct2017 | InceptionV3 | Acc: 96.6 Sensitivity: 97.8 |