| natural-language-inference-on-ax | T5 | |
| natural-language-inference-on-mnli-snli-anli | SMARTRoBERTa-LARGE | % Dev Accuracy: 57.1 % Test Accuracy: 57.1 |
| natural-language-inference-on-multinli | SMART+BERT-BASE | |
| natural-language-inference-on-multinli | T5 | Matched: 92.0 Mismatched: 91.7 |
| natural-language-inference-on-multinli | SMARTRoBERTa | Dev Matched: 91.1 Dev Mismatched: 91.3 |
| natural-language-inference-on-multinli | MT-DNN-SMARTv0 | |
| natural-language-inference-on-multinli | SMART-BERT | Dev Matched: 85.6 Dev Mismatched: 86.0 |
| natural-language-inference-on-multinli | MT-DNN-SMART | |
| natural-language-inference-on-qnli | SMART-BERT | - |
| natural-language-inference-on-qnli | ALICE | |
| natural-language-inference-on-qnli | MT-DNN-SMART | |
| natural-language-inference-on-qnli | SMARTRoBERTa | - |
| natural-language-inference-on-rte | T5-XXL 11B | |
| natural-language-inference-on-rte | SMART-BERT | |
| natural-language-inference-on-rte | SMARTRoBERTa | |
| natural-language-inference-on-rte | SMART | |
| natural-language-inference-on-scitail | MT-DNN-SMART_1%ofTrainingData | |
| natural-language-inference-on-scitail | MT-DNN-SMARTLARGEv0 | % Dev Accuracy: 96.6 % Test Accuracy: 95.2 |
| natural-language-inference-on-scitail | MT-DNN-SMART_0.1%ofTrainingData | |
| natural-language-inference-on-scitail | MT-DNN-SMART_100%ofTrainingData | |
| natural-language-inference-on-scitail | MT-DNN-SMART_10%ofTrainingData | |
| natural-language-inference-on-snli | MT-DNN-SMART_0.1%ofTrainingData | |
| natural-language-inference-on-snli | MT-DNN-SMARTLARGEv0 | % Dev Accuracy: 92.6 % Test Accuracy: 91.7 |
| natural-language-inference-on-snli | MT-DNN-SMART_1%ofTrainingData | |
| natural-language-inference-on-snli | MT-DNN-SMART_100%ofTrainingData | |
| natural-language-inference-on-snli | MT-DNN-SMART_10%ofTrainingData | |
| natural-language-understanding-on-glue | MT-DNN-SMART | |
| paraphrase-identification-on-quora-question | SMART-BERT | Dev Accuracy: 91.5 Dev F1: 88.5 |
| paraphrase-identification-on-quora-question | FreeLB | Accuracy: 74.8 Dev Accuracy: 92.6 |
| paraphrase-identification-on-quora-question | ALICE | |
| semantic-textual-similarity-on-mrpc | SMART-BERT | - |
| semantic-textual-similarity-on-mrpc | SMART | |
| semantic-textual-similarity-on-mrpc | SMARTRoBERTa | - |
| semantic-textual-similarity-on-mrpc | MT-DNN-SMART | |
| semantic-textual-similarity-on-sts-benchmark | SMART-BERT | Dev Pearson Correlation: 90.0 Dev Spearman Correlation: 89.4 |
| semantic-textual-similarity-on-sts-benchmark | MT-DNN-SMART | Pearson Correlation: 0.929 Spearman Correlation: 0.925 |
| semantic-textual-similarity-on-sts-benchmark | SMARTRoBERTa | Dev Pearson Correlation: 92.8 Dev Spearman Correlation: 92.6 |
| sentiment-analysis-on-sst-2-binary | SMART+BERT-BASE | |
| sentiment-analysis-on-sst-2-binary | MT-DNN | |
| sentiment-analysis-on-sst-2-binary | SMART-MT-DNN | |
| sentiment-analysis-on-sst-2-binary | SMART-BERT | |
| sentiment-analysis-on-sst-2-binary | MT-DNN-SMART | |
| sentiment-analysis-on-sst-2-binary | SMARTRoBERTa | |