
摘要
我们提出了一种简单而高效的无锚点实例分割方法,称为CenterMask,该方法在无锚点单阶段目标检测器(FCOS)中添加了一个新颖的空间注意力引导掩模(SAG-Mask)分支,类似于Mask R-CNN。通过将SAG-Mask分支集成到FCOS目标检测器中,该分支能够在每个边界框上预测一个分割掩模,利用空间注意力图来关注有用像素并抑制噪声。此外,我们还介绍了一种改进的骨干网络VoVNetV2,采用了两种有效的策略:(1) 残差连接以缓解较大VoVNet \cite{lee2019energy} 的优化问题;(2) 有效的挤压-激励(eSE)机制以解决原始SE中的通道信息丢失问题。结合SAG-Mask和VoVNetV2,我们设计了分别针对大型和小型模型的CenterMask和CenterMask-Lite。使用相同的ResNet-101-FPN骨干网络,CenterMask实现了38.3%的性能,超越了所有先前的最先进方法,并且速度更快。CenterMask-Lite在Titan Xp上的帧率超过35fps时也大幅超过了最先进水平。我们希望CenterMask和VoVNetV2能够分别作为实时实例分割和各种视觉任务骨干网络的坚实基线。代码可在https://github.com/youngwanLEE/CenterMask获取。
代码仓库
mahdi-darvish/centermask
pytorch
GitHub 中提及
hades12580/centermask2
pytorch
GitHub 中提及
youngwanLEE/centermask2
pytorch
GitHub 中提及
suvasis/birdnet2cs231n
pytorch
GitHub 中提及
youngwanLEE/vovnet-detectron2
pytorch
GitHub 中提及
zhuoyang125/CenterMask2
pytorch
GitHub 中提及
youngwanLEE/CenterMask
官方
pytorch
GitHub 中提及
mahdi-darvish/Cloud_Segmentation_using_Mask_R-CNN
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| instance-segmentation-on-coco | CenterMask + VoVNetV2-99 (single-scale) | AP50: 62.3 AP75: 44.1 APL: 57.0 APM: 42.8 APS: 20.1 mask AP: 40.6 |
| instance-segmentation-on-coco | CenterMask + VoVNetV2-57 (single-scale) | AP50: 60.8 APM: 41.7 APS: 19.4 |
| instance-segmentation-on-coco | CenterMask + VoVNetV2-99 (multi-scale) | AP50: 66.2 AP75: 47.4 APS: 27.2 |
| instance-segmentation-on-coco | CenterMask + ResNet-101-FPN | mask AP: 38.3 |
| instance-segmentation-on-coco | CenterMask + VoVNet99 | APL: 54.3 APM: 44.4 APS: 24.4 mask AP: 41.8 |
| instance-segmentation-on-coco | CenterMask + X101-32x8d (single-scale) | AP50: 61.2 AP75: 42.9 APS: 19.7 mask AP: 39.6 |
| instance-segmentation-on-coco-minival | CenterMask-VoVNetV2-99 (multi-scale) | mask AP: 42.5 |
| instance-segmentation-on-coco-minival | CenterMask-VoVNetV2-99-3x | mask AP: 40.2 |
| object-detection-on-coco | Centermask + ResNet101 | AP50: 61.6 AP75: 46.9 Hardware Burden: Operations per network pass: |
| object-detection-on-coco | CenterMask+VoVNet2-57 (single-scale) | AP50: 63.1 AP75: 48.6 APL: 55.9 APS: 27.1 Hardware Burden: Operations per network pass: box mAP: 44.7 |
| object-detection-on-coco | CenterMask+VoVNetV2-99 (single-scale) | AP50: 64.5 APL: 57.6 APM: 48.3 APS: 27.8 Hardware Burden: Operations per network pass: box mAP: 45.8 |
| object-detection-on-coco | CenterMask-VoVNet99 (multi-scale) | AP50: 68.3 AP75: 53.2 APL: 60.0 APS: 32.4 Hardware Burden: Operations per network pass: |
| object-detection-on-coco | CenterMask + X-101-32x8d (single-scale) | AP50: 63.4 AP75: 48.4 APM: 47.2 Hardware Burden: Operations per network pass: box mAP: 44.6 |
| object-detection-on-coco-minival | CenterMask+VoVNetV2-99 (single-scale) | APL: 58.8 APS: 29.2 box AP: 45.6 |
| object-detection-on-coco-minival | CenterMask+VoVNet99 (multi-scale) | AP50: 67.8 box AP: 48.6 |
| object-detection-on-coco-minival | Mask R-CNN (VoVNetV2-99, single-scale) | APL: 57.7 APS: 28.5 box AP: 44.9 |
| object-detection-on-coco-minival | CenterMask+VoVNetV2-57 (single-scale) | APM: 48.3 APS: 27.7 box AP: 44.6 |
| object-detection-on-coco-minival | CenterMask+X101-32x8d (single-scale) | APL: 57.1 APS: 26.7 box AP: 44.4 |
| real-time-instance-segmentation-on-mscoco | CenterMask-Lite (ResNet-50-FPN) | APL: 48.7 APM: 34.7 APS: 12.9 mask AP: 32.9 |
| semi-supervised-instance-segmentation-on-coco-4 | CenterMask2 (ResNet50) | mask AP: 10.07 |
| semi-supervised-instance-segmentation-on-coco-5 | CenterMask2 (ResNet50) | mask AP: 13.46 |
| semi-supervised-instance-segmentation-on-coco-6 | CenterMask2 (ResNet50) | mask AP: 18.04 |
| semi-supervised-instance-segmentation-on-coco-7 | CenterMask2 (ResNet50) | mask AP: 22.08 |