4 个月前

CenterMask:实时无锚点实例分割

CenterMask:实时无锚点实例分割

摘要

我们提出了一种简单而高效的无锚点实例分割方法,称为CenterMask,该方法在无锚点单阶段目标检测器(FCOS)中添加了一个新颖的空间注意力引导掩模(SAG-Mask)分支,类似于Mask R-CNN。通过将SAG-Mask分支集成到FCOS目标检测器中,该分支能够在每个边界框上预测一个分割掩模,利用空间注意力图来关注有用像素并抑制噪声。此外,我们还介绍了一种改进的骨干网络VoVNetV2,采用了两种有效的策略:(1) 残差连接以缓解较大VoVNet \cite{lee2019energy} 的优化问题;(2) 有效的挤压-激励(eSE)机制以解决原始SE中的通道信息丢失问题。结合SAG-Mask和VoVNetV2,我们设计了分别针对大型和小型模型的CenterMask和CenterMask-Lite。使用相同的ResNet-101-FPN骨干网络,CenterMask实现了38.3%的性能,超越了所有先前的最先进方法,并且速度更快。CenterMask-Lite在Titan Xp上的帧率超过35fps时也大幅超过了最先进水平。我们希望CenterMask和VoVNetV2能够分别作为实时实例分割和各种视觉任务骨干网络的坚实基线。代码可在https://github.com/youngwanLEE/CenterMask获取。

代码仓库

mahdi-darvish/centermask
pytorch
GitHub 中提及
hades12580/centermask2
pytorch
GitHub 中提及
youngwanLEE/centermask2
pytorch
GitHub 中提及
suvasis/birdnet2cs231n
pytorch
GitHub 中提及
youngwanLEE/vovnet-detectron2
pytorch
GitHub 中提及
zhuoyang125/CenterMask2
pytorch
GitHub 中提及
youngwanLEE/CenterMask
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
instance-segmentation-on-cocoCenterMask + VoVNetV2-99 (single-scale)
AP50: 62.3
AP75: 44.1
APL: 57.0
APM: 42.8
APS: 20.1
mask AP: 40.6
instance-segmentation-on-cocoCenterMask + VoVNetV2-57 (single-scale)
AP50: 60.8
APM: 41.7
APS: 19.4
instance-segmentation-on-cocoCenterMask + VoVNetV2-99 (multi-scale)
AP50: 66.2
AP75: 47.4
APS: 27.2
instance-segmentation-on-cocoCenterMask + ResNet-101-FPN
mask AP: 38.3
instance-segmentation-on-cocoCenterMask + VoVNet99
APL: 54.3
APM: 44.4
APS: 24.4
mask AP: 41.8
instance-segmentation-on-cocoCenterMask + X101-32x8d (single-scale)
AP50: 61.2
AP75: 42.9
APS: 19.7
mask AP: 39.6
instance-segmentation-on-coco-minivalCenterMask-VoVNetV2-99 (multi-scale)
mask AP: 42.5
instance-segmentation-on-coco-minivalCenterMask-VoVNetV2-99-3x
mask AP: 40.2
object-detection-on-cocoCentermask + ResNet101
AP50: 61.6
AP75: 46.9
Hardware Burden:
Operations per network pass:
object-detection-on-cocoCenterMask+VoVNet2-57 (single-scale)
AP50: 63.1
AP75: 48.6
APL: 55.9
APS: 27.1
Hardware Burden:
Operations per network pass:
box mAP: 44.7
object-detection-on-cocoCenterMask+VoVNetV2-99 (single-scale)
AP50: 64.5
APL: 57.6
APM: 48.3
APS: 27.8
Hardware Burden:
Operations per network pass:
box mAP: 45.8
object-detection-on-cocoCenterMask-VoVNet99 (multi-scale)
AP50: 68.3
AP75: 53.2
APL: 60.0
APS: 32.4
Hardware Burden:
Operations per network pass:
object-detection-on-cocoCenterMask + X-101-32x8d (single-scale)
AP50: 63.4
AP75: 48.4
APM: 47.2
Hardware Burden:
Operations per network pass:
box mAP: 44.6
object-detection-on-coco-minivalCenterMask+VoVNetV2-99 (single-scale)
APL: 58.8
APS: 29.2
box AP: 45.6
object-detection-on-coco-minivalCenterMask+VoVNet99 (multi-scale)
AP50: 67.8
box AP: 48.6
object-detection-on-coco-minivalMask R-CNN (VoVNetV2-99, single-scale)
APL: 57.7
APS: 28.5
box AP: 44.9
object-detection-on-coco-minivalCenterMask+VoVNetV2-57 (single-scale)
APM: 48.3
APS: 27.7
box AP: 44.6
object-detection-on-coco-minivalCenterMask+X101-32x8d (single-scale)
APL: 57.1
APS: 26.7
box AP: 44.4
real-time-instance-segmentation-on-mscocoCenterMask-Lite (ResNet-50-FPN)
APL: 48.7
APM: 34.7
APS: 12.9
mask AP: 32.9
semi-supervised-instance-segmentation-on-coco-4CenterMask2 (ResNet50)
mask AP: 10.07
semi-supervised-instance-segmentation-on-coco-5CenterMask2 (ResNet50)
mask AP: 13.46
semi-supervised-instance-segmentation-on-coco-6CenterMask2 (ResNet50)
mask AP: 18.04
semi-supervised-instance-segmentation-on-coco-7CenterMask2 (ResNet50)
mask AP: 22.08

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
CenterMask:实时无锚点实例分割 | 论文 | HyperAI超神经