摘要
许多少样本学习(Few-Shot Learning)研究工作通常包含两个阶段:预训练基础模型(base model)以及将其适配至新类别(novel classes)的阶段。本文提出采用闭式解基础学习器(closed-form base learner),通过在预训练基础模型的约束下进行适配,以获得泛化能力更强的新模型。随后的理论分析证明了该方法的合理性,并进一步指明了如何训练一个具有良好泛化性能的基础模型。我们在四个基准数据集上进行了实验,结果表明在所有情况下均达到了当前最优的性能表现。特别地,在5-shot miniImageNet任务上,我们取得了87.75%的准确率,相较于现有方法大约提升了10%。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| few-shot-image-classification-on-cifar-fs-5 | ACC + Amphibian | Accuracy: 73.1 |
| few-shot-image-classification-on-cifar-fs-5-1 | ACC + Amphibian | Accuracy: 89.3 |
| few-shot-image-classification-on-fc100-5-way | ACC + Amphibian | Accuracy: 41.6 |
| few-shot-image-classification-on-fc100-5-way-1 | ACC + Amphibian | Accuracy: 66.9 |
| few-shot-image-classification-on-mini-2 | ACC + Amphibian | Accuracy: 62.21 |
| few-shot-image-classification-on-mini-3 | ACC + Amphibian | Accuracy: 80.75 |
| few-shot-image-classification-on-tiered | ACC + Amphibian | Accuracy: 68.77 |
| few-shot-image-classification-on-tiered-1 | ACC + Amphibian | Accuracy: 86.75 |