3 个月前

基于高分辨率光流估计的深度视频超分辨率

基于高分辨率光流估计的深度视频超分辨率

摘要

视频超分辨率(Video Super-Resolution, SR)旨在从低分辨率(Low-Resolution, LR)视频帧序列中生成具有合理且时序一致细节的高分辨率(High-Resolution, HR)帧序列。该任务的核心挑战在于有效建模连续帧之间的时序依赖关系。现有的基于深度学习的方法通常通过估计LR帧之间的光流来捕捉时序信息,然而,LR光流与HR输出之间存在的分辨率不匹配问题,严重制约了精细细节的恢复效果。本文提出一种端到端的视频超分辨率网络,同时对光流和图像进行超分辨率重建。通过从LR帧中恢复HR光流,可提供更精确的时序依赖关系,从而显著提升视频超分辨率的性能。具体而言,我们首先设计了一种分阶段的光流重建网络(Optical Flow Reconstruction network, OFRnet),采用从粗到细的策略推断HR光流。随后,利用HR光流进行运动补偿,以有效编码帧间时序信息。最后,将补偿后的LR输入送入超分辨率网络(SRnet),生成最终的超分辨率结果。大量实验验证了HR光流在提升超分辨率性能方面的有效性。在Vid4和DAVIS-10数据集上的对比实验结果表明,所提出的网络达到了当前最优的性能水平,显著优于现有方法。

基准测试

基准方法指标
video-super-resolution-on-msu-super-1SOF-VSR-BD + uavs3e
BSQ-rate over ERQA: 11.458
BSQ-rate over LPIPS: 4.007
BSQ-rate over MS-SSIM: 3.566
BSQ-rate over PSNR: 8.658
BSQ-rate over VMAF: 6.596
video-super-resolution-on-msu-super-1SOF-VSR-BD + aomenc
BSQ-rate over ERQA: 15.11
BSQ-rate over LPIPS: 4.034
BSQ-rate over MS-SSIM: 7.546
BSQ-rate over PSNR: 13.076
BSQ-rate over VMAF: 7.464
video-super-resolution-on-msu-super-1SOF-VSR-BD + x265
BSQ-rate over ERQA: 13.098
BSQ-rate over LPIPS: 13.141
BSQ-rate over MS-SSIM: 1.825
BSQ-rate over PSNR: 3.274
BSQ-rate over VMAF: 4.346
video-super-resolution-on-msu-super-1SOF-VSR-BI + aomenc
BSQ-rate over ERQA: 12.808
BSQ-rate over LPIPS: 4.82
BSQ-rate over MS-SSIM: 6.833
BSQ-rate over PSNR: 11.314
BSQ-rate over Subjective Score: 2.84
BSQ-rate over VMAF: 5.398
video-super-resolution-on-msu-super-1SOF-VSR-BD + vvenc
BSQ-rate over ERQA: 15.958
BSQ-rate over LPIPS: 13.494
BSQ-rate over MS-SSIM: 2.112
BSQ-rate over PSNR: 8.027
BSQ-rate over VMAF: 6.41
video-super-resolution-on-msu-super-1SOF-VSR-BI + uavs3e
BSQ-rate over ERQA: 5.299
BSQ-rate over LPIPS: 4.23
BSQ-rate over MS-SSIM: 6.82
BSQ-rate over PSNR: 10.917
BSQ-rate over Subjective Score: 3.196
BSQ-rate over VMAF: 5.361
video-super-resolution-on-msu-super-1SOF-VSR-BI + x265
BSQ-rate over ERQA: 18.545
BSQ-rate over LPIPS: 11.236
BSQ-rate over MS-SSIM: 4.558
BSQ-rate over PSNR: 9.07
BSQ-rate over Subjective Score: 2.244
BSQ-rate over VMAF: 3.565
video-super-resolution-on-msu-super-1SOF-VSR-BD + x264
BSQ-rate over ERQA: 1.544
BSQ-rate over LPIPS: 1.262
BSQ-rate over MS-SSIM: 0.843
BSQ-rate over PSNR: 2.763
BSQ-rate over VMAF: 1.213
video-super-resolution-on-msu-super-1SOF-VSR-BI + x264
BSQ-rate over ERQA: 4.981
BSQ-rate over LPIPS: 1.26
BSQ-rate over MS-SSIM: 0.764
BSQ-rate over PSNR: 6.058
BSQ-rate over Subjective Score: 1.273
BSQ-rate over VMAF: 1.083
video-super-resolution-on-msu-super-1SOF-VSR-BI + vvenc
BSQ-rate over ERQA: 18.844
BSQ-rate over LPIPS: 11.273
BSQ-rate over MS-SSIM: 4.882
BSQ-rate over PSNR: 9.245
BSQ-rate over Subjective Score: 2.822
BSQ-rate over VMAF: 4.527
video-super-resolution-on-msu-video-upscalersSOF-VSR
PSNR: 27.14
SSIM: 0.937
VMAF: 56.45
video-super-resolution-on-msu-vsr-benchmarkSOF-VSR-BI
1 - LPIPS: 0.904
ERQAv1.0: 0.66
FPS: 0.571
PSNR: 29.381
QRCRv1.0: 0.557
SSIM: 0.872
Subjective score: 4.805
video-super-resolution-on-msu-vsr-benchmarkSOF-VSR-BD
1 - LPIPS: 0.895
ERQAv1.0: 0.647
FPS: 0.699
PSNR: 25.986
QRCRv1.0: 0.557
SSIM: 0.831
Subjective score: 4.863
video-super-resolution-on-vid4-4x-upscalingSOF-VSR
PSNR: 26
SSIM: 0.772

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供