
摘要
视频超分辨率(Video Super-Resolution, SR)旨在从低分辨率(Low-Resolution, LR)视频帧序列中生成具有合理且时序一致细节的高分辨率(High-Resolution, HR)帧序列。该任务的核心挑战在于有效建模连续帧之间的时序依赖关系。现有的基于深度学习的方法通常通过估计LR帧之间的光流来捕捉时序信息,然而,LR光流与HR输出之间存在的分辨率不匹配问题,严重制约了精细细节的恢复效果。本文提出一种端到端的视频超分辨率网络,同时对光流和图像进行超分辨率重建。通过从LR帧中恢复HR光流,可提供更精确的时序依赖关系,从而显著提升视频超分辨率的性能。具体而言,我们首先设计了一种分阶段的光流重建网络(Optical Flow Reconstruction network, OFRnet),采用从粗到细的策略推断HR光流。随后,利用HR光流进行运动补偿,以有效编码帧间时序信息。最后,将补偿后的LR输入送入超分辨率网络(SRnet),生成最终的超分辨率结果。大量实验验证了HR光流在提升超分辨率性能方面的有效性。在Vid4和DAVIS-10数据集上的对比实验结果表明,所提出的网络达到了当前最优的性能水平,显著优于现有方法。
代码仓库
LongguangWang/SOF-VSR
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| video-super-resolution-on-msu-super-1 | SOF-VSR-BD + uavs3e | BSQ-rate over ERQA: 11.458 BSQ-rate over LPIPS: 4.007 BSQ-rate over MS-SSIM: 3.566 BSQ-rate over PSNR: 8.658 BSQ-rate over VMAF: 6.596 |
| video-super-resolution-on-msu-super-1 | SOF-VSR-BD + aomenc | BSQ-rate over ERQA: 15.11 BSQ-rate over LPIPS: 4.034 BSQ-rate over MS-SSIM: 7.546 BSQ-rate over PSNR: 13.076 BSQ-rate over VMAF: 7.464 |
| video-super-resolution-on-msu-super-1 | SOF-VSR-BD + x265 | BSQ-rate over ERQA: 13.098 BSQ-rate over LPIPS: 13.141 BSQ-rate over MS-SSIM: 1.825 BSQ-rate over PSNR: 3.274 BSQ-rate over VMAF: 4.346 |
| video-super-resolution-on-msu-super-1 | SOF-VSR-BI + aomenc | BSQ-rate over ERQA: 12.808 BSQ-rate over LPIPS: 4.82 BSQ-rate over MS-SSIM: 6.833 BSQ-rate over PSNR: 11.314 BSQ-rate over Subjective Score: 2.84 BSQ-rate over VMAF: 5.398 |
| video-super-resolution-on-msu-super-1 | SOF-VSR-BD + vvenc | BSQ-rate over ERQA: 15.958 BSQ-rate over LPIPS: 13.494 BSQ-rate over MS-SSIM: 2.112 BSQ-rate over PSNR: 8.027 BSQ-rate over VMAF: 6.41 |
| video-super-resolution-on-msu-super-1 | SOF-VSR-BI + uavs3e | BSQ-rate over ERQA: 5.299 BSQ-rate over LPIPS: 4.23 BSQ-rate over MS-SSIM: 6.82 BSQ-rate over PSNR: 10.917 BSQ-rate over Subjective Score: 3.196 BSQ-rate over VMAF: 5.361 |
| video-super-resolution-on-msu-super-1 | SOF-VSR-BI + x265 | BSQ-rate over ERQA: 18.545 BSQ-rate over LPIPS: 11.236 BSQ-rate over MS-SSIM: 4.558 BSQ-rate over PSNR: 9.07 BSQ-rate over Subjective Score: 2.244 BSQ-rate over VMAF: 3.565 |
| video-super-resolution-on-msu-super-1 | SOF-VSR-BD + x264 | BSQ-rate over ERQA: 1.544 BSQ-rate over LPIPS: 1.262 BSQ-rate over MS-SSIM: 0.843 BSQ-rate over PSNR: 2.763 BSQ-rate over VMAF: 1.213 |
| video-super-resolution-on-msu-super-1 | SOF-VSR-BI + x264 | BSQ-rate over ERQA: 4.981 BSQ-rate over LPIPS: 1.26 BSQ-rate over MS-SSIM: 0.764 BSQ-rate over PSNR: 6.058 BSQ-rate over Subjective Score: 1.273 BSQ-rate over VMAF: 1.083 |
| video-super-resolution-on-msu-super-1 | SOF-VSR-BI + vvenc | BSQ-rate over ERQA: 18.844 BSQ-rate over LPIPS: 11.273 BSQ-rate over MS-SSIM: 4.882 BSQ-rate over PSNR: 9.245 BSQ-rate over Subjective Score: 2.822 BSQ-rate over VMAF: 4.527 |
| video-super-resolution-on-msu-video-upscalers | SOF-VSR | PSNR: 27.14 SSIM: 0.937 VMAF: 56.45 |
| video-super-resolution-on-msu-vsr-benchmark | SOF-VSR-BI | 1 - LPIPS: 0.904 ERQAv1.0: 0.66 FPS: 0.571 PSNR: 29.381 QRCRv1.0: 0.557 SSIM: 0.872 Subjective score: 4.805 |
| video-super-resolution-on-msu-vsr-benchmark | SOF-VSR-BD | 1 - LPIPS: 0.895 ERQAv1.0: 0.647 FPS: 0.699 PSNR: 25.986 QRCRv1.0: 0.557 SSIM: 0.831 Subjective score: 4.863 |
| video-super-resolution-on-vid4-4x-upscaling | SOF-VSR | PSNR: 26 SSIM: 0.772 |