
摘要
本文研究了嵌入学习的原理,以应对具有挑战性的半监督视频目标分割问题。不同于以往仅利用前景目标像素进行嵌入学习的做法,我们认为背景也应得到同等对待,因此提出了基于前景-背景融合的协作视频目标分割(CFBI)方法。我们的CFBI方法隐式地施加了目标前景及其对应背景特征嵌入之间的对比性,从而促进了分割结果的提升。通过同时从前景和背景中提取特征嵌入,CFBI在参考序列和预测序列之间执行像素级和实例级的匹配过程,使其对不同目标尺度具有鲁棒性。我们在三个流行的基准数据集上进行了广泛的实验,即DAVIS 2016、DAVIS 2017和YouTube-VOS。实验结果显示,我们的CFBI方法分别在这三个数据集上取得了89.4%、81.9%和81.4%的性能(J$F),优于所有其他最先进的方法。代码:https://github.com/z-x-yang/CFBI。
代码仓库
z-x-yang/CFBI
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| semi-supervised-video-object-segmentation-on-1 | CFBI | F-measure (Mean): 78.5 Ju0026F: 74.8 Jaccard (Mean): 71.1 |
| semi-supervised-video-object-segmentation-on-20 | CFBI | D16 val (F): 86.9 D16 val (G): 86.1 D16 val (J): 85.3 D17 val (F): 77.7 D17 val (G): 74.9 D17 val (J): 72.1 FPS: 5.56 |
| video-object-segmentation-on-youtube-vos | CFBI | F-Measure (Seen): 85.8 F-Measure (Unseen): 83.4 Jaccard (Seen): 81.1 Jaccard (Unseen): 75.3 Overall: 81.4 Params(M): 66.3 Speed (FPS): 3.4 |
| video-object-segmentation-on-youtube-vos-2019-2 | CFBI+ | F-Measure (Seen): 86.2 F-Measure (Unseen): 85.2 Jaccard (Seen): 81.7 Jaccard (Unseen): 77.1 Mean Jaccard u0026 F-Measure: 82.6 |
| visual-object-tracking-on-davis-2016 | CFBI | F-measure (Mean): 90.5 Ju0026F: 89.4 Jaccard (Mean): 88.3 |
| visual-object-tracking-on-davis-2017 | CFBI | F-measure (Mean): 84.6 Ju0026F: 81.9 Jaccard (Mean): 79.1 |