
摘要
近年来,卷积神经网络在计算效率方面取得了显著提升。其中一项关键驱动力在于,通过结合使用 $1\times1$ 卷积与深度可分离卷积(depth-wise separable convolutions),替代传统的标准卷积层,实现了模型表达能力与计算效率之间的权衡。然而,这种效率提升的代价是网络中空间与通道间信息流动的次优表现。为克服这一局限,本文提出 MUXConv 层,该层通过逐步对通道信息与空间信息进行多路复用(multiplexing),有效增强网络中的信息流动,同时控制计算复杂度的增加。为进一步验证 MUXConv 的有效性,我们将其集成至一种高效的多目标进化算法中,用于联合搜索最优模型超参数,同时优化模型的准确率、紧凑性与计算效率。在 ImageNet 数据集上,所构建的模型(称为 MUXNet)在 Top-1 准确率(75.3%)与乘加操作数(218M)方面与 MobileNetV3 相当,但模型体积缩小了 1.6 倍,且在准确率、紧凑性与计算效率三项指标上均优于其他移动端模型。此外,MUXNet 在迁移学习任务以及目标检测任务中也表现出优异性能。在 ChestX-Ray 14 基准测试中,其准确率达到当前最先进水平,同时模型体积缩小 3.3 倍,计算效率提升 14 倍。在 PASCAL VOC 2007 目标检测任务中,相比 MobileNetV2,MUXNet 实现了 1.2% 的准确率提升,推理速度加快 28%,且模型体积减少 6%。相关代码已开源,可访问 https://github.com/human-analysis/MUXConv。
代码仓库
human-analysis/MUXConv
官方
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| architecture-search-on-cifar-10-image | MUXNet-m | FLOPS: 200M Params: 2.1M Percentage error: 2.0 |
| image-classification-on-cifar-10 | MUXNet-m | Percentage correct: 98.0 Top-1 Accuracy: 98.0 |
| image-classification-on-cifar-100 | MUXNet-m | PARAMS: 2.1M Percentage correct: 86.1 |
| image-classification-on-imagenet | MUXNet-s | GFLOPs: 0.234 Number of params: 2.4M Top 1 Accuracy: 71.6% |
| image-classification-on-imagenet | MUXNet-l | GFLOPs: 0.636 Number of params: 4.0M Top 1 Accuracy: 76.6% |
| image-classification-on-imagenet | MUXNet-m | GFLOPs: 0.436 Number of params: 3.4M Top 1 Accuracy: 75.3% |
| image-classification-on-imagenet | MUXNet-xs | GFLOPs: 0.132 Number of params: 1.8M Top 1 Accuracy: 66.7% |
| neural-architecture-search-on-cifar-10 | MUXNet-m | FLOPS: 200M Parameters: 2.1M Top-1 Error Rate: 2.0% |
| neural-architecture-search-on-cifar-100-1 | MUXNet-m | FLOPS: 200M PARAMS: 2.1M Percentage Error: 13.9 |
| neural-architecture-search-on-imagenet | MUXNet-l | Accuracy: 76.6 MACs: 318M Params: 4.0M Top-1 Error Rate: 23.4 |
| neural-architecture-search-on-imagenet | MUXNet-m | Accuracy: 75.3 MACs: 218M Params: 3.4M Top-1 Error Rate: 24.7 |
| neural-architecture-search-on-imagenet | MUXNet-s | Accuracy: 71.6 MACs: 117M Params: 2.4M Top-1 Error Rate: 28.4 |
| neural-architecture-search-on-imagenet | MUXNet-xs | Accuracy: 66.7 MACs: 66M Params: 1.8M Top-1 Error Rate: 33.3 |
| pneumonia-detection-on-chestx-ray14 | MUXNet-m | AUROC: 0.841 FLOPS: 200M Params: 2.1M |
| semantic-segmentation-on-ade20k | MUXNet-m + PPM | Validation mIoU: 35.8 |
| semantic-segmentation-on-ade20k | MUXNet-m + C1 | Validation mIoU: 32.42 |