
摘要
低层次细节与高层次语义在语义分割任务中均至关重要。然而,为提升模型推理速度,现有方法通常不得不牺牲低层次细节信息,导致精度显著下降。为此,我们提出将空间细节与类别语义分别处理,以实现实时语义分割在高精度与高效率之间的良好平衡。为此,我们设计了一种高效且有效的网络架构——双边分割网络(Bilateral Segmentation Network, BiSeNet V2),在速度与精度之间取得了优异的权衡。该架构包含两个并行分支:(i)细节分支(Detail Branch),采用宽通道与浅层结构,用于捕捉低层次细节,并生成高分辨率的特征表示;(ii)语义分支(Semantic Branch),采用窄通道与深层结构,以获取高层语义上下文信息。得益于通道容量的缩减与快速下采样策略,语义分支具有轻量化特性。此外,我们设计了引导聚合层(Guided Aggregation Layer),以增强两分支之间的相互关联,并有效融合两类特征表示。同时,我们提出一种增强型训练策略,在不增加任何推理开销的前提下,进一步提升分割性能。大量定量与定性实验结果表明,所提出的架构在多个主流实时语义分割方法中表现优异。具体而言,在输入分辨率为 2,048×1,024 的情况下,我们在 Cityscapes 测试集上达到了 72.6% 的平均交并比(Mean IoU),并在单张 NVIDIA GeForce GTX 1080 Ti 显卡上实现了 156 FPS 的推理速度。该性能显著优于现有方法,不仅速度更快,且分割精度更高。
代码仓库
PaddlePaddle/PaddleSeg
paddle
hamidriasat/BiSeNetV2
tf
GitHub 中提及
MaybeShewill-CV/bisenetv2-tensorflow
tf
GitHub 中提及
ycszen/BiSeNet
GitHub 中提及
zh320/realtime-semantic-segmentation-pytorch
pytorch
GitHub 中提及
gymoon10/Instance-Segmentation-with-SpatialEmbedding-CA
pytorch
GitHub 中提及
CoinCheung/BiSeNet
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| real-time-semantic-segmentation-on-camvid | BiSeNet V2 | Frame (fps): 124.5 Time (ms): 8.0 mIoU: 72.4 |
| real-time-semantic-segmentation-on-camvid | BiSeNet V2-Large(Cityscapes-Pretrained) | Frame (fps): 32.7 Time (ms): 30.6 mIoU: 78.5 |
| real-time-semantic-segmentation-on-camvid | BiSeNet V2-Large | Frame (fps): 32.7 Time (ms): 30.6 mIoU: 73.2 |
| real-time-semantic-segmentation-on-camvid | BiSeNet V2(Cityscapes-Pretrained) | Frame (fps): 124.5 Time (ms): 8.0 mIoU: 76.7 |
| real-time-semantic-segmentation-on-cityscapes | BiSeNet V2 | Frame (fps): 156 Time (ms): 6.4 mIoU: 72.6% |
| real-time-semantic-segmentation-on-cityscapes | BiSeNet V2-Large | Frame (fps): 47.3 Time (ms): 21.1 mIoU: 75.3% |
| real-time-semantic-segmentation-on-cityscapes-1 | BiseNetV2-L | Frame (fps): 47.3 mIoU: 75.8% |
| real-time-semantic-segmentation-on-cityscapes-1 | BiseNetV2 | Frame (fps): 156 mIoU: 73.5% |
| real-time-semantic-segmentation-on-coco-stuff-1 | BiSeNet V2-Large | Frame (fps): 42.5(1080Ti) mIoU: 28.7 |
| real-time-semantic-segmentation-on-coco-stuff-1 | BiSeNet V2 | Frame (fps): 87.9(1080Ti) mIoU: 25.2 |