4 个月前

从广义零样本学习到长尾分类描述符

从广义零样本学习到长尾分类描述符

摘要

现实世界中的数据大多不平衡且呈长尾分布,但深度模型在存在频繁类别的情况下难以识别稀有类别。通常,类别可以伴随诸如文本描述的辅助信息,但如何利用这些信息进行不平衡长尾数据的学习尚不完全明确。此类描述主要被用于(广义)零样本学习(ZSL),这表明带有类别描述的ZSL也可能对长尾分布有益。我们介绍了一种名为DRAGON的后期融合架构,用于带有类别描述的长尾学习。该架构能够(1)逐样本纠正偏向头部类别的偏差;以及(2)融合类别描述中的信息以提高尾部类别的准确性。我们还引入了新的基准数据集CUB-LT、SUN-LT和AWA-LT,这些数据集基于现有的属性学习数据集,并包含带有类别描述的Imagenet-LT版本。DRAGON在新基准上超越了现有最先进模型的表现,同时也在现有的GFSL带类别描述(GFSL-d)和标准(仅视觉)长尾学习基准ImageNet-LT、CIFAR-10、CIFAR-100和Places365上取得了新的最佳性能。

代码仓库

dvirsamuel/DRAGON
官方
tf
GitHub 中提及

基准测试

基准方法指标
generalized-few-shot-learning-on-awa2DRAGON
Per-Class Accuracy (1-shot): 67.1
Per-Class Accuracy (10-shots): 81.9
Per-Class Accuracy (2-shots): 69.1
Per-Class Accuracy (20-shots): 83.3
Per-Class Accuracy (5-shots): 76.7
generalized-few-shot-learning-on-sunDRAGON
Per-Class Accuracy (1-shot): 41.0
Per-Class Accuracy (10-shots): 48.2
Per-Class Accuracy (2-shots): 43.8
Per-Class Accuracy (5-shots): 46.7
long-tail-learning-on-cifar-10-lt-r-10smDRAGON
Error Rate: 11.84
long-tail-learning-on-cifar-10-lt-r-100smDRAGON
Error Rate: 20.37
long-tail-learning-on-cifar-100-lt-r-10smDRAGON
Error Rate: 41.23
long-tail-learning-on-cifar-100-lt-r-100smDRAGON
Error Rate: 56.50
long-tail-learning-on-imagenet-ltsmDRAGON
Top-1 Accuracy: 42.0
long-tail-learning-on-places-ltsmDRAGON
Top-1 Accuracy: 38.1
long-tail-learning-with-class-descriptors-onDRAGON + Bal'Loss
Long-Tailed Accuracy: 66.5
Per-Class Accuracy: 60.1
long-tail-learning-with-class-descriptors-onDRAGON
Long-Tailed Accuracy: 67.7
Per-Class Accuracy: 57.8
long-tail-learning-with-class-descriptors-on-1DRAGON + Bal'Loss
Long-Tailed Accuracy: 38.5
Per-Class Accuracy: 36.1
long-tail-learning-with-class-descriptors-on-1DRAGON
Long-Tailed Accuracy: 40.4
Per-Class Accuracy: 34.8
long-tail-learning-with-class-descriptors-on-2DRAGON + Bal'Loss
Long-Tailed Accuracy: 92.2
Per-Class Accuracy: 76.2
long-tail-learning-with-class-descriptors-on-2DRAGON
Long-Tailed Accuracy: 94.1
Per-Class Accuracy: 74.1
long-tail-learning-with-class-descriptors-on-3DRAGON + Bal'Loss
Per-Class Accuracy: 53.5
long-tail-learning-with-class-descriptors-on-3DRAGON
Per-Class Accuracy: 51.2

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
从广义零样本学习到长尾分类描述符 | 论文 | HyperAI超神经