Hang ZhangChongruo WuZhongyue ZhangYi ZhuHaibin LinZhi ZhangYue SunTong HeJonas MuellerR. ManmathaMu LiAlexander Smola

摘要
众所周知,特征图注意力机制与多路径表征在视觉识别任务中具有重要意义。本文提出了一种模块化架构,通过在不同网络分支上应用通道注意力机制,充分挖掘其在捕捉跨特征交互以及学习多样化表征方面的优势。该设计形成了一种简洁且统一的计算模块,仅需少量参数即可进行有效配置。所提出的模型名为ResNeSt,在图像分类任务中,其在准确率与延迟之间的权衡表现优于EfficientNet。此外,ResNeSt在多个公开基准数据集上作为主干网络进行迁移学习时,均取得了优异的性能,已被用于COCO-LVIS挑战赛的优胜方案中。完整的系统代码及预训练模型均已公开发布。
代码仓库
thepooons/melanoma-comp-2020
pytorch
GitHub 中提及
RobertHong1992/Resnest
pytorch
GitHub 中提及
open-mmlab/mmpose
pytorch
ZJCV/ZCls
pytorch
GitHub 中提及
rwightman/pytorch-image-models
pytorch
GitHub 中提及
shellhue/detectron2-ResNeSt
pytorch
GitHub 中提及
PaddlePaddle/PaddleClas
paddle
mohitktanwr/Deep-Stem-ResNeSt-ISPRS
pytorch
GitHub 中提及
zhanghang1989/PyTorch-Encoding
pytorch
GitHub 中提及
open-mmlab/mmdetection
pytorch
ferna11i/detectron2_ResNeST
pytorch
GitHub 中提及
Burf/ResNeSt-Tensorflow2
tf
GitHub 中提及
YeongHyeon/ResNeSt-TF2
tf
GitHub 中提及
ChengWeiGu/ResNeSt-Pytorch
pytorch
GitHub 中提及
zhanghang1989/detectron2-ResNeSt
pytorch
GitHub 中提及
mohitktanwr/ResNeSt_Inverse
pytorch
GitHub 中提及
osmr/imgclsmob
mxnet
GitHub 中提及
zhanghang1989/ResNeSt
官方
pytorch
GitHub 中提及
Yuxiang1995/ICDAR2021_MFD
pytorch
GitHub 中提及
sailfish009/detectron2-ResNeSt
pytorch
GitHub 中提及
He-jerry/DSSNet
pytorch
GitHub 中提及
AnudeepKonda/MIMII_anamoly_detection
pytorch
GitHub 中提及
Mind23-2/MindCode-115
mindspore
STomoya/ResNeSt
pytorch
GitHub 中提及
chongruo/detectron2-resnest
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| image-classification-on-imagenet | ResNeSt-50 | GFLOPs: 5.39 Number of params: 27.5M Top 1 Accuracy: 81.13% |
| image-classification-on-imagenet | ResNeSt-200 | Number of params: 70M Top 1 Accuracy: 83.9% |
| image-classification-on-imagenet | ResNeSt-50-fast | GFLOPs: 4.34 Number of params: 27.5M Top 1 Accuracy: 80.64% |
| image-classification-on-imagenet | ResNeSt-101 | Number of params: 48M Top 1 Accuracy: 83.0% |
| image-classification-on-imagenet | ResNeSt-269 | Number of params: 111M Top 1 Accuracy: 84.5% |
| instance-segmentation-on-coco | ResNeSt101 | mask AP: 43% |
| instance-segmentation-on-coco | ResNeSt-200 (multi-scale) | AP50: 70.2 AP75: 51.5 APL: 60.6 APM: 49.6 APS: 30.0 |
| instance-segmentation-on-coco-minival | ResNeSt-200 (multi-scale) | mask AP: 46.25 |
| instance-segmentation-on-coco-minival | ResNeSt-200-DCN (single-scale) | mask AP: 44.5 |
| instance-segmentation-on-coco-minival | ResNeSt-101 (single-scale) | mask AP: 41.56 |
| instance-segmentation-on-coco-minival | ResNeSt-200 (single-scale) | mask AP: 44.21 |
| object-detection-on-coco | ResNeSt-200 (multi-scale) | AP50: 72.0 AP75: 58.0 APL: 66.8 APM: 56.2 APS: 35.1 box mAP: 53.3 |
| object-detection-on-coco-minival | ResNeSt-200 (multi-scale) | AP50: 71.00 AP75: 57.07 APL: 66.29 APM: 56.36 APS: 36.80 box AP: 52.47 |
| object-detection-on-coco-minival | ResNeSt-200-DCN (single-scale) | AP50: 69.53 AP75: 55.40 APL: 65.83 APM: 54.66 APS: 32.67 box AP: 50.91 |
| object-detection-on-coco-minival | ResNeSt-200 (single-scale) | AP50: 68.78 AP75: 55.17 APL: 63.9 APM: 54.2 box AP: 50.54 |
| panoptic-segmentation-on-coco-minival | PanopticFPN+ResNeSt(single-scale) | PQ: 47.9 PQst: 37.0 PQth: 55.1 |
| semantic-segmentation-on-ade20k | ResNeSt-200 | Validation mIoU: 48.36 |
| semantic-segmentation-on-ade20k | ResNeSt-269 | Validation mIoU: 47.60 |
| semantic-segmentation-on-ade20k | ResNeSt-101 | Validation mIoU: 46.91 |
| semantic-segmentation-on-ade20k-val | ResNeSt-269 | mIoU: 47.60 |
| semantic-segmentation-on-ade20k-val | ResNeSt-200 | mIoU: 48.36 |
| semantic-segmentation-on-ade20k-val | ResNeSt-101 | mIoU: 46.91 |
| semantic-segmentation-on-cityscapes | ResNeSt200 (Mapillary) | Mean IoU (class): 83.3% |
| semantic-segmentation-on-cityscapes-val | ResNeSt-200 | mIoU: 82.7 |
| semantic-segmentation-on-dada-seg | ResNeSt (ResNeSt-101) | mIoU: 19.99 |
| semantic-segmentation-on-pascal-context | ResNeSt-200 | mIoU: 58.4 |
| semantic-segmentation-on-pascal-context | ResNeSt-269 | mIoU: 58.9 |
| semantic-segmentation-on-pascal-context | ResNeSt-101 | mIoU: 56.5 |