3 个月前

ResNeSt:分割注意力网络

ResNeSt:分割注意力网络

摘要

众所周知,特征图注意力机制与多路径表征在视觉识别任务中具有重要意义。本文提出了一种模块化架构,通过在不同网络分支上应用通道注意力机制,充分挖掘其在捕捉跨特征交互以及学习多样化表征方面的优势。该设计形成了一种简洁且统一的计算模块,仅需少量参数即可进行有效配置。所提出的模型名为ResNeSt,在图像分类任务中,其在准确率与延迟之间的权衡表现优于EfficientNet。此外,ResNeSt在多个公开基准数据集上作为主干网络进行迁移学习时,均取得了优异的性能,已被用于COCO-LVIS挑战赛的优胜方案中。完整的系统代码及预训练模型均已公开发布。

代码仓库

thepooons/melanoma-comp-2020
pytorch
GitHub 中提及
RobertHong1992/Resnest
pytorch
GitHub 中提及
ZJCV/ZCls
pytorch
GitHub 中提及
rwightman/pytorch-image-models
pytorch
GitHub 中提及
shellhue/detectron2-ResNeSt
pytorch
GitHub 中提及
zhanghang1989/PyTorch-Encoding
pytorch
GitHub 中提及
ferna11i/detectron2_ResNeST
pytorch
GitHub 中提及
Burf/ResNeSt-Tensorflow2
tf
GitHub 中提及
YeongHyeon/ResNeSt-TF2
tf
GitHub 中提及
ChengWeiGu/ResNeSt-Pytorch
pytorch
GitHub 中提及
zhanghang1989/detectron2-ResNeSt
pytorch
GitHub 中提及
mohitktanwr/ResNeSt_Inverse
pytorch
GitHub 中提及
osmr/imgclsmob
mxnet
GitHub 中提及
zhanghang1989/ResNeSt
官方
pytorch
GitHub 中提及
Yuxiang1995/ICDAR2021_MFD
pytorch
GitHub 中提及
sailfish009/detectron2-ResNeSt
pytorch
GitHub 中提及
He-jerry/DSSNet
pytorch
GitHub 中提及
STomoya/ResNeSt
pytorch
GitHub 中提及
chongruo/detectron2-resnest
pytorch
GitHub 中提及

基准测试

基准方法指标
image-classification-on-imagenetResNeSt-50
GFLOPs: 5.39
Number of params: 27.5M
Top 1 Accuracy: 81.13%
image-classification-on-imagenetResNeSt-200
Number of params: 70M
Top 1 Accuracy: 83.9%
image-classification-on-imagenetResNeSt-50-fast
GFLOPs: 4.34
Number of params: 27.5M
Top 1 Accuracy: 80.64%
image-classification-on-imagenetResNeSt-101
Number of params: 48M
Top 1 Accuracy: 83.0%
image-classification-on-imagenetResNeSt-269
Number of params: 111M
Top 1 Accuracy: 84.5%
instance-segmentation-on-cocoResNeSt101
mask AP: 43%
instance-segmentation-on-cocoResNeSt-200 (multi-scale)
AP50: 70.2
AP75: 51.5
APL: 60.6
APM: 49.6
APS: 30.0
instance-segmentation-on-coco-minivalResNeSt-200 (multi-scale)
mask AP: 46.25
instance-segmentation-on-coco-minivalResNeSt-200-DCN (single-scale)
mask AP: 44.5
instance-segmentation-on-coco-minivalResNeSt-101 (single-scale)
mask AP: 41.56
instance-segmentation-on-coco-minivalResNeSt-200 (single-scale)
mask AP: 44.21
object-detection-on-cocoResNeSt-200 (multi-scale)
AP50: 72.0
AP75: 58.0
APL: 66.8
APM: 56.2
APS: 35.1
box mAP: 53.3
object-detection-on-coco-minivalResNeSt-200 (multi-scale)
AP50: 71.00
AP75: 57.07
APL: 66.29
APM: 56.36
APS: 36.80
box AP: 52.47
object-detection-on-coco-minivalResNeSt-200-DCN (single-scale)
AP50: 69.53
AP75: 55.40
APL: 65.83
APM: 54.66
APS: 32.67
box AP: 50.91
object-detection-on-coco-minivalResNeSt-200 (single-scale)
AP50: 68.78
AP75: 55.17
APL: 63.9
APM: 54.2
box AP: 50.54
panoptic-segmentation-on-coco-minivalPanopticFPN+ResNeSt(single-scale)
PQ: 47.9
PQst: 37.0
PQth: 55.1
semantic-segmentation-on-ade20kResNeSt-200
Validation mIoU: 48.36
semantic-segmentation-on-ade20kResNeSt-269
Validation mIoU: 47.60
semantic-segmentation-on-ade20kResNeSt-101
Validation mIoU: 46.91
semantic-segmentation-on-ade20k-valResNeSt-269
mIoU: 47.60
semantic-segmentation-on-ade20k-valResNeSt-200
mIoU: 48.36
semantic-segmentation-on-ade20k-valResNeSt-101
mIoU: 46.91
semantic-segmentation-on-cityscapesResNeSt200 (Mapillary)
Mean IoU (class): 83.3%
semantic-segmentation-on-cityscapes-valResNeSt-200
mIoU: 82.7
semantic-segmentation-on-dada-segResNeSt (ResNeSt-101)
mIoU: 19.99
semantic-segmentation-on-pascal-contextResNeSt-200
mIoU: 58.4
semantic-segmentation-on-pascal-contextResNeSt-269
mIoU: 58.9
semantic-segmentation-on-pascal-contextResNeSt-101
mIoU: 56.5

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供