4 个月前

量化引导的JPEG伪影校正

量化引导的JPEG伪影校正

摘要

JPEG图像压缩算法因其能够实现高压缩比而成为最流行的图像压缩方法。然而,为了达到如此高的压缩效果,部分信息会被丢失。在激进的量化设置下,这会导致图像质量显著下降。近年来,基于深度神经网络的伪影校正研究已取得一定进展,但当前最先进的方法需要为每个质量设置单独训练一个模型,极大地限制了其实际应用。我们通过创建一种新颖的架构来解决这一问题,该架构以JPEG文件的量化矩阵作为参数。这使得我们的单一模型能够在特定质量设置下训练的模型中实现最先进的性能。

代码仓库

基准测试

基准方法指标
jpeg-artifact-correction-on-bsds500-qualityQGAC
PSNR: 27.69
PSNR-B: 27.36
SSIM: 0.810
jpeg-artifact-correction-on-bsds500-quality-1QGAC
PSNR: 29.89
PSNR-B: 29.29
SSIM: 0.876
jpeg-artifact-correction-on-bsds500-quality-2QGAC
PSNR: 31.15
PSNR-B: 30.37
SSIM: 0.903
jpeg-artifact-correction-on-bsds500-quality-3QGAC
PSNR: 29.54
PSNR-B: 29.04
SSIM: 0.833
jpeg-artifact-correction-on-bsds500-quality-4QGAC
PSNR: 31.79
PSNR-B: 30.96
SSIM: 0.894
jpeg-artifact-correction-on-bsds500-quality-5QGAC
PSNR: 33.12
PSNR-B: 32.42
SSIM: 0.907
jpeg-artifact-correction-on-classic5-qualityQGAC
PSNR: 29.84
PSNR-B: 29.43
SSIM: 0.837
jpeg-artifact-correction-on-classic5-quality-1QGAC
PSNR: 31.98
PSNR-B: 31.37
SSIM: 0.885
jpeg-artifact-correction-on-classic5-quality-2QGAC
PSNR: 33.22
PSNR-B: 32.42
SSIM: 0.907
jpeg-artifact-correction-on-icb-quality-10QGAC
PSNR: 32.11
PSNR-B: 32.47
SSIM: 0.815
jpeg-artifact-correction-on-icb-quality-10-1QGAC
PSNR: 34.73
PSNR-B: 34.58
SSIM: 0.896
jpeg-artifact-correction-on-icb-quality-20QGAC
PSNR: 34.23
PSNR-B: 34.67
SSIM: 0.845
jpeg-artifact-correction-on-icb-quality-20-1QGAC
PSNR: 37.12
PSNR-B: 36.88
SSIM: 0.924
jpeg-artifact-correction-on-icb-quality-30QGAC
PSNR: 35.20
PSNR-B: 35.67
SSIM: 0.860
jpeg-artifact-correction-on-icb-quality-30-1QGAC
PSNR: 38.43
jpeg-artifact-correction-on-live1-quality-10QGAC
PSNR: 27.65
PSNR-B: 27.40
SSIM: 0.819
jpeg-artifact-correction-on-live1-quality-10-1QGAC
PSNR: 29.53
PSNR-B: 29.15
SSIM: 0.840
jpeg-artifact-correction-on-live1-quality-20QGAC
PSNR: 29.92
PSNR-B: 29.51
SSIM: 0.882
jpeg-artifact-correction-on-live1-quality-20-1QGAC
PSNR: 31.86
PSNR-B: 31.27
SSIM: 0.901
jpeg-artifact-correction-on-live1-quality-30QGAC
PSNR: 31.21
PSNR-B: 30.71
SSIM: 0.908
jpeg-artifact-correction-on-live1-quality-30-1QGAC
PSNR: 33.23
PSNR-B: 32.50
SSIM: 0.925

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
量化引导的JPEG伪影校正 | 论文 | HyperAI超神经