4 个月前

非局部图神经网络

非局部图神经网络

摘要

现代图神经网络(GNNs)通过多层局部聚合学习节点嵌入,并在同配图的应用中取得了巨大成功。然而,异配图上的任务通常需要非局部聚合。此外,我们发现对于某些异配图而言,局部聚合甚至是有害的。在这项工作中,我们提出了一种简单而有效的非局部聚合框架,该框架结合了高效的注意力引导排序机制。基于此框架,我们开发了多种非局部GNN模型。我们进行了详尽的实验,分析了异配图数据集并评估了我们的非局部GNN模型。实验结果表明,我们的非局部GNN模型在七个异配图基准数据集上显著优于现有的最先进方法,无论是在模型性能还是效率方面均表现出色。

代码仓库

基准测试

基准方法指标
node-classification-on-actorNLMLP 
Accuracy: 37.9 ± 1.3
node-classification-on-actorNLGCN 
Accuracy: 31.6 ± 1.0
node-classification-on-actorNLGAT 
Accuracy: 29.5 ± 1.3
node-classification-on-chameleonNLMLP 
Accuracy: 50.7 ± 2.2
node-classification-on-chameleonNLGCN 
Accuracy: 70.1 ± 2.9
node-classification-on-chameleonNLGAT 
Accuracy: 65.7 ± 1.4
node-classification-on-citeseer-48-32-20NLGCN 
1:1 Accuracy: 75.2 ± 1.4
node-classification-on-citeseer-48-32-20NLGAT 
1:1 Accuracy: 76.2 ± 1.6
node-classification-on-citeseer-48-32-20NLMLP 
1:1 Accuracy: 73.4 ± 1.9
node-classification-on-cora-48-32-20-fixedNLGAT 
1:1 Accuracy: 88.5 ± 1.8
node-classification-on-cora-48-32-20-fixedNLGCN 
1:1 Accuracy: 88.1 ± 1.0
node-classification-on-cora-48-32-20-fixedNLMLP 
1:1 Accuracy: 76.9 ± 1.8
node-classification-on-cornellNLGAT 
Accuracy: 54.7 ± 7.6
node-classification-on-cornellNLMLP 
Accuracy: 84.9 ± 5.7
node-classification-on-cornellNLGCN 
Accuracy: 57.6 ± 5.5
node-classification-on-non-homophilic-10NLGAT 
1:1 Accuracy: 29.5 ± 1.3
node-classification-on-non-homophilic-10NLMLP 
1:1 Accuracy: 37.9 ± 1.3
node-classification-on-non-homophilic-10NLGCN 
1:1 Accuracy: 31.6 ± 1.0
node-classification-on-non-homophilic-11NLMLP 
1:1 Accuracy: 50.7 ± 2.2
node-classification-on-non-homophilic-11NLGAT 
1:1 Accuracy: 65.7 ± 1.4
node-classification-on-non-homophilic-11NLGCN 
1:1 Accuracy: 70.1 ± 2.9
node-classification-on-non-homophilic-12NLMLP 
1:1 Accuracy: 33.7 ± 1.5
node-classification-on-non-homophilic-12NLGCN 
1:1 Accuracy: 59.0 ± 1.2
node-classification-on-non-homophilic-12NLGAT 
1:1 Accuracy: 56.8 ± 2.5
node-classification-on-non-homophilic-7NLMLP 
1:1 Accuracy: 84.9 ± 5.7
node-classification-on-non-homophilic-7NLGCN 
1:1 Accuracy: 57.6 ± 5.5
node-classification-on-non-homophilic-7NLGAT 
1:1 Accuracy: 54.7 ± 7.6
node-classification-on-non-homophilic-8NLMLP 
1:1 Accuracy: 87.3 ± 4.3 
node-classification-on-non-homophilic-8NLGCN 
1:1 Accuracy: 60.2 ± 5.3 
node-classification-on-non-homophilic-8NLGAT 
1:1 Accuracy: 56.9 ± 7.3
node-classification-on-non-homophilic-9NLMLP 
1:1 Accuracy: 85.4 ± 3.8
node-classification-on-non-homophilic-9NLGAT 
1:1 Accuracy: 62.6 ± 7.1
node-classification-on-non-homophilic-9NLGCN 
1:1 Accuracy: 65.5 ± 6.6
node-classification-on-pubmed-48-32-20-fixedNLGAT 
1:1 Accuracy: 88.2 ± 0.3
node-classification-on-pubmed-48-32-20-fixedNLMLP 
1:1 Accuracy: 88.2 ± 0.5
node-classification-on-pubmed-48-32-20-fixedNLGCN 
1:1 Accuracy: 89.0 ± 0.5
node-classification-on-squirrelNLMLP 
Accuracy: 33.7 ± 1.5
node-classification-on-squirrelNLGAT 
Accuracy: 56.8 ± 2.5
node-classification-on-squirrelNLGCN 
Accuracy: 59.0 ± 1.2
node-classification-on-texasNLMLP 
Accuracy: 85.4 ± 3.8
node-classification-on-texasNLGAT 
Accuracy: 62.6 ± 7.1
node-classification-on-texasNLGCN 
Accuracy: 65.5 ± 6.6
node-classification-on-wisconsinNLGAT 
Accuracy: 56.9 ± 7.3
node-classification-on-wisconsinNLMLP 
Accuracy: 87.3 ± 4.3
node-classification-on-wisconsinNLGCN 
Accuracy: 60.2 ± 5.3

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
非局部图神经网络 | 论文 | HyperAI超神经