
摘要
我们提出一种面向无监督域适应的方法,从类别条件域对齐的视角出发,重点关注域内类别不平衡与域间类别分布偏移等实际问题。当前的类别条件域对齐方法旨在通过目标域的伪标签估计,显式地最小化损失函数。然而,这类方法容易受到伪标签偏差的影响,导致误差累积问题。为此,我们提出一种新方法,无需直接对基于伪标签的模型参数进行显式优化。相反,我们引入一种基于采样的隐式对齐机制,其中样本选择过程由伪标签隐式引导。理论分析揭示,在未对齐类别中存在一种域判别器捷径(domain-discriminator shortcut),而所提出的隐式对齐方法能够有效缓解该问题,从而促进域对抗学习的进行。实验结果与消融研究充分验证了该方法的有效性,尤其在面对域内类别不平衡及域间类别分布偏移时表现突出。
代码仓库
xiangdal/implicit_alignment
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| unsupervised-domain-adaptation-on-office-31 | Implicit Alignment (with MDD) | Avg accuracy: 88.8 |
| unsupervised-domain-adaptation-on-office-home | Implicit Alignment (with MDD) | Avg accuracy: 69.5 |
| unsupervised-domain-adaptation-on-office-home-1 | COAL | Average Per-Class Accuracy: 58.4 |
| unsupervised-domain-adaptation-on-office-home-1 | MDD | Average Per-Class Accuracy: 55.44 |
| unsupervised-domain-adaptation-on-office-home-1 | Implicit Alignment (with MDD) | Average Per-Class Accuracy: 61.67 |
| unsupervised-domain-adaptation-on-office-home-1 | DANN | Average Per-Class Accuracy: 56.91 |
| unsupervised-domain-adaptation-on-office-home-1 | Source Only | Average Per-Class Accuracy: 52.81 |
| unsupervised-domain-adaptation-on-visda2017 | Implicit Alignment (with MDD) | Accuracy: 75.8 |