3 个月前

Seq2Tens:通过低秩张量投影实现序列的高效表示

Seq2Tens:通过低秩张量投影实现序列的高效表示

摘要

序列数据(如时间序列、视频或文本)在分析上具有挑战性,因为其有序结构导致了复杂的依赖关系。这一问题的核心在于非交换性:重新排列序列中的元素可能完全改变其语义。为此,我们采用一个经典的数学工具——张量代数(tensor algebra),以捕捉此类依赖关系。为应对高阶张量固有的计算复杂性,我们引入低秩张量投影的复合结构。该方法构建出模块化且可扩展的神经网络组件,在标准基准测试中表现出色,例如在多变量时间序列分类任务以及视频生成模型中均达到了当前最优性能。

代码仓库

tgcsaba/seq2tens
官方
tf
GitHub 中提及

基准测试

基准方法指标
imputation-on-hmnistGP-VAE (B-NLST)
AUROC: 0.962
MSE: 0.092
NLL: 0.251
imputation-on-physionet-challenge-2012GP-VAE (B-NLST)
AUROC: 0.743
imputation-on-spritesGP-VAE (B-NLST)
MSE: 0.002
time-series-classification-onSNLST
Accuracy: 0.957
time-series-classification-onFCN-SNLST
Accuracy: 0.994
time-series-classification-on-arabicdigitsSNLST
Accuracy: 0.968
time-series-classification-on-arabicdigitsFCN-SNLST
Accuracy: 0.993
time-series-classification-on-auslanFCN-SNLST
Accuracy: 0.993
time-series-classification-on-auslanSNLST
Accuracy: 0.969
time-series-classification-on-cmusubject16FCN-SNLST
Accuracy: 1
time-series-classification-on-cmusubject16SNLST
Accuracy: 1
time-series-classification-on-digitshapesFCN-SNLST
Accuracy: 1
time-series-classification-on-digitshapesSNLST
Accuracy: 1
time-series-classification-on-ecgSNLST
Accuracy: 0.842
time-series-classification-on-ecgFCN-SNLST
Accuracy: 0.860
time-series-classification-on-japanesevowelsSNLST
Accuracy: 0.979
time-series-classification-on-japanesevowelsFCN-SNLST
Accuracy: 0.980
time-series-classification-on-kickvspunchSNLST
Accuracy: 1
time-series-classification-on-kickvspunchFCN-SNLST
Accuracy: 1
time-series-classification-on-librasSNLST
Accuracy: 0.773
time-series-classification-on-librasFCN-SNLST
Accuracy: 0.957
time-series-classification-on-netflowFCN-SNLST
Accuracy: 0.960
time-series-classification-on-netflowSNLST
Accuracy: 0.793
time-series-classification-on-pemsFCN-SNLST
Accuracy: 0.857
time-series-classification-on-pemsSNLST
Accuracy: 0.747
time-series-classification-on-pendigitsSNLST
Accuracy: 0.954
time-series-classification-on-pendigitsFCN-SNLST
Accuracy: 0.953
time-series-classification-on-shapesSNLST
Accuracy: 1
time-series-classification-on-shapesFCN-SNLST
Accuracy: 1
time-series-classification-on-uwaveSNLST
Accuracy: 0.938
time-series-classification-on-uwaveFCN-SNLST
Accuracy: 0.969
time-series-classification-on-waferSNLST
Accuracy: 0.981
time-series-classification-on-waferFCN-SNLST
Accuracy: 0.989
time-series-classification-on-walkvsrunSNLST
Accuracy: 1
time-series-classification-on-walkvsrunFCN-SNLST
Accuracy: 1

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
Seq2Tens:通过低秩张量投影实现序列的高效表示 | 论文 | HyperAI超神经