
摘要
我们介绍了一种新的自监督图像表示学习方法——Bootstrap Your Own Latent(BYOL)。BYOL 依赖于两个神经网络,分别称为在线网络和目标网络,这两个网络相互作用并从对方学习。我们通过图像的一种增强视图训练在线网络,使其预测同一图像在不同增强视图下的目标网络表示。同时,我们使用在线网络的缓慢移动平均值来更新目标网络。尽管当前最先进的方法依赖于负样本对,但 BYOL 在没有负样本对的情况下达到了新的最先进水平。使用 ResNet-50 架构进行线性评估时,BYOL 在 ImageNet 上的 top-1 分类准确率达到了 74.3%,而使用更大的 ResNet 架构时则达到了 79.6%。我们展示了 BYOL 在迁移学习和半监督学习基准测试中表现与当前最先进方法相当或更优。我们的实现代码和预训练模型已在 GitHub 上提供。
代码仓库
miszkur/SelfSupervisedLearning
tf
GitHub 中提及
lucidrains/byol-pytorch
pytorch
GitHub 中提及
sthalles/PyTorch-BYOL
pytorch
GitHub 中提及
Namkyeong/BGRL_Pytorch
pytorch
GitHub 中提及
HibikiJie/BYOL
pytorch
GitHub 中提及
filipbasara0/matryoshka-representation-learning
pytorch
GitHub 中提及
Westlake-AI/openmixup
pytorch
GitHub 中提及
sabadijou/byol_multi_gpu
pytorch
GitHub 中提及
facebookresearch/clip-rocket
pytorch
GitHub 中提及
SaeedShurrab/SimSiam-pytorch
pytorch
GitHub 中提及
fmi-basel/implicit-var-reg
pytorch
GitHub 中提及
vturrisi/solo-learn
pytorch
GitHub 中提及
jramapuram/BYOL
pytorch
GitHub 中提及
Kennethborup/BYOL
pytorch
GitHub 中提及
juneweng/byol-pytorch
pytorch
GitHub 中提及
yaox12/BYOL-PyTorch
pytorch
GitHub 中提及
alibaba/EasyCV
pytorch
SaeedShurrab/Simple-BYOL
pytorch
GitHub 中提及
kakaobrain/scrl
pytorch
amazon-research/exponential-moving-average-normalization
pytorch
GitHub 中提及
talipucar/PyFlow_BYOL
pytorch
GitHub 中提及
ReshinthAdith/BYOL-Pytorch
pytorch
GitHub 中提及
philippmwirth/byol
pytorch
GitHub 中提及
htdt/self-supervised
pytorch
GitHub 中提及
EchoItLiu/SelfGait
pytorch
GitHub 中提及
reshinthadithyan/BYOL-Pytorch
pytorch
GitHub 中提及
liyi01827/noisy-contrastive
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| image-classification-on-places205 | BYOL | Top 1 Accuracy: 54.0 |
| person-re-identification-on-sysu-30k | BYOL (self-supervised) | Rank-1: 12.7 |
| self-supervised-image-classification-on | BYOL (ResNet-200 x2) | Number of Params: 250M Top 1 Accuracy: 79.6% Top 5 Accuracy: 94.8% |
| self-supervised-image-classification-on | BYOL (ResNet-50 x2) | Number of Params: 94M Top 1 Accuracy: 77.4% Top 5 Accuracy: 93.6% |
| self-supervised-image-classification-on | BYOL (ResNet-50 x4) | Number of Params: 375M Top 1 Accuracy: 78.6% Top 5 Accuracy: 94.2% |
| self-supervised-image-classification-on | BYOL (ResNet-50) | Number of Params: 24M Top 1 Accuracy: 74.3% Top 5 Accuracy: 91.6% |
| self-supervised-person-re-identification-on | BYOL | Rank-1: 12.7 |
| semi-supervised-image-classification-on-1 | BYOL (ResNet-50) | Top 1 Accuracy: 53.2% Top 5 Accuracy: 78.4% |
| semi-supervised-image-classification-on-1 | BYOL (ResNet-50 x2) | Top 1 Accuracy: 62.2% Top 5 Accuracy: 84.1% |
| semi-supervised-image-classification-on-1 | BYOL (ResNet-200 x2) | Top 1 Accuracy: 71.2% Top 5 Accuracy: 89.5% |
| semi-supervised-image-classification-on-1 | BYOL (ResNet-50 x4) | Top 1 Accuracy: 69.1% Top 5 Accuracy: 87.9% |