
摘要
我们提出了一种新的快速框架——Wasserstein Embedding for Graph Learning(WEGL),用于将整个图嵌入向量空间,从而使得各种机器学习模型可以应用于图级别的预测任务。我们利用了新的见解,将图之间的相似度定义为其节点嵌入分布的相似度函数。具体而言,我们使用Wasserstein距离来衡量不同图的节点嵌入之间的差异。与以往的方法不同,我们避免了对图之间进行两两距离计算,从而将计算复杂度从图的数量的二次方降低到线性。WEGL通过从参考分布计算到每个节点嵌入的Monge映射,并基于这些映射生成图的固定大小向量表示。我们在多个基准图属性预测任务上评估了这一新的图嵌入方法,展示了最先进的分类性能,同时具有优越的计算效率。代码可在https://github.com/navid-naderi/WEGL 获取。
代码仓库
navid-naderi/WEGL
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| graph-classification-on-collab | WEGL | Accuracy: 79.8% |
| graph-classification-on-dd | WEGL | Accuracy: 78.6% |
| graph-classification-on-enzymes | WEGL | Accuracy: 60.5 |
| graph-classification-on-imdb-b | WEGL | Accuracy: 75.4% |
| graph-classification-on-imdb-m | WEGL | Accuracy: 52% |
| graph-classification-on-mutag | WEGL | Accuracy: 88.3% |
| graph-classification-on-nci1 | WEGL | Accuracy: 76.8% |
| graph-classification-on-proteins | WEGL | Accuracy: 76.5% |
| graph-classification-on-ptc | WEGL | Accuracy: 67.5% |
| graph-classification-on-re-m12k | WEGL | Accuracy: 47.8% |
| graph-classification-on-re-m5k | WEGL | Accuracy: 55.1% |
| graph-classification-on-reddit-b | WEGL | Accuracy: 92 |
| graph-property-prediction-on-ogbg-molhiv | WEGL | Ext. data: No Number of params: 361064 Test ROC-AUC: 0.7757 ± 0.0111 Validation ROC-AUC: 0.8101 ± 0.0097 |