4 个月前

超越同质性在图神经网络中的应用:当前局限与有效设计

超越同质性在图神经网络中的应用:当前局限与有效设计

摘要

我们研究了图神经网络在异质性(即连接节点可能具有不同的类别标签和不相似的特征)或低同质性的半监督节点分类任务中的表示能力。许多流行的图神经网络在这种设置下无法泛化,甚至被忽略图结构的模型(例如多层感知机)超越。鉴于这一局限性,我们确定了一组关键设计——自我嵌入与邻居嵌入分离、高阶邻域和中间表示的组合——这些设计可以增强图神经网络在异质性条件下的学习能力。我们将这些设计结合到一个图神经网络H2GCN中,并将其作为基础方法来实证评估所识别设计的有效性。除了传统的强同质性基准测试之外,我们的实证分析表明,在合成和真实异质性网络上,所识别的设计分别将图神经网络的准确性提高了40%和27%,并且在同质性条件下也能取得有竞争力的性能。

代码仓库

GemsLab/H2GCN
官方
tf
GitHub 中提及
kdd-submitter/on_local_aggregation
pytorch
GitHub 中提及
GitEventhandler/H2GCN-PyTorch
pytorch
GitHub 中提及

基准测试

基准方法指标
node-classification-on-actorH2GCN-2
Accuracy: 34.49 ± 1.63
node-classification-on-actorH2GCN-1
Accuracy: 34.31 ± 1.31
node-classification-on-chameleonH2GCN-1
Accuracy: 52.96 ± 2.09
node-classification-on-chameleonH2GCN-2
Accuracy: 58.38 ± 1.76
node-classification-on-chameleon-60-20-20H2GCN
1:1 Accuracy: 52.30 ± 0.48
node-classification-on-citeseer-48-32-20H2GCN
1:1 Accuracy: 77.11 ± 1.57
node-classification-on-cora-48-32-20-fixedH2GCN
1:1 Accuracy: 87.87 ± 1.20
node-classification-on-cora-60-20-20-randomH2GCN
1:1 Accuracy: 87.52 ± 0.61
node-classification-on-cornellH2GCN-1
Accuracy: 78.11 ± 6.68
node-classification-on-cornellH2GCN-2
Accuracy: 79.46 ± 4.80
node-classification-on-cornell-60-20-20H2GCN
1:1 Accuracy: 86.23 ± 4.71
node-classification-on-non-homophilicH2GCN
1:1 Accuracy: 86.23 ± 4.71
node-classification-on-non-homophilic-1H2GCN
1:1 Accuracy: 87.5 ± 1.77
node-classification-on-non-homophilic-10H2GCN
1:1 Accuracy: 35.70 ± 1.00
node-classification-on-non-homophilic-11H2GCN
1:1 Accuracy: 60.11 ± 2.15
node-classification-on-non-homophilic-12H2GCN
1:1 Accuracy: 36.48 ± 1.86
node-classification-on-non-homophilic-13H2GCN
1:1 Accuracy: 81.31 ± 0.60
node-classification-on-non-homophilic-2H2GCN
1:1 Accuracy: 85.90 ± 3.53
node-classification-on-non-homophilic-4H2GCN
1:1 Accuracy: 52.30 ± 0.48
node-classification-on-non-homophilic-6H2GCN
1:1 Accuracy: 67.22±0.90
node-classification-on-non-homophilic-7H2GCN
1:1 Accuracy: 82.70 ± 5.28
node-classification-on-non-homophilic-8H2GCN
1:1 Accuracy: 87.65 ± 4.98
node-classification-on-penn94H2GCN
Accuracy: 81.31 ± 0.60
node-classification-on-pubmed-48-32-20-fixedH2GCN
1:1 Accuracy: 89.49 ± 0.38
node-classification-on-pubmed-60-20-20-randomH2GCN
1:1 Accuracy: 87.78 ± 0.28
node-classification-on-squirrelH2GCN-1
Accuracy: 28.98 ± 1.97
node-classification-on-squirrelH2GCN-2
Accuracy: 32.33 ± 1.94
node-classification-on-squirrel-60-20-20H2GCN
1:1 Accuracy: 30.39 ± 1.22
node-classification-on-texasH2GCN-1
Accuracy: 83.24 ± 7.07
node-classification-on-texasH2GCN-2
Accuracy: 80.00 ± 6.77
node-classification-on-texas-60-20-20-randomH2GCN
1:1 Accuracy: 85.90 ± 3.53
node-classification-on-wisconsinH2GCN-1
Accuracy: 84.31 ± 3.70
node-classification-on-wisconsinH2GCN-2
Accuracy: 83.14 ± 4.26
node-classification-on-wisconsin-60-20-20H2GCN
1:1 Accuracy: 87.5 ± 1.77

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
超越同质性在图神经网络中的应用:当前局限与有效设计 | 论文 | HyperAI超神经