
摘要
本文研究了人体动作识别问题,即从骨骼数据中对剪裁后的序列进行动作分类。尽管当前针对该任务的最先进方法均为监督学习范式,本文则探索了一个更具挑战性的方向:采用无监督学习解决该问题。为此,我们提出了一种新型子空间聚类方法,该方法利用协方差矩阵增强动作的可区分性,并引入一种时间戳剪枝策略,以更有效地处理数据的时间维度特征。通过广泛的实验验证,我们证明所提出的计算流程不仅显著优于现有的无监督方法,甚至在性能上可与部分监督学习方法相媲美。
代码仓库
IIT-PAVIS/subspace-clustering-action-recognition
官方
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| skeleton-based-action-recognition-on-florence | Temporal Spectral Clustering + Temporal Subspace Clustering | Accuracy: 95.81% |
| skeleton-based-action-recognition-on-gaming | Temporal K-Means Clustering + Temporal Covariance Subspace Clustering | Accuracy: 92.91% |
| skeleton-based-action-recognition-on-hdm05 | Temporal Subspace Clustering | Accuracy: 89.80% |
| skeleton-based-action-recognition-on-msr | Temporal K-Means Clustering + Temporal Subspace Clustering | Accuracy: 88.51% |
| skeleton-based-action-recognition-on-msr-1 | Temporal Subspace Clustering | Accuracy: 98.02% |
| skeleton-based-action-recognition-on-msrc-12 | Temporal Subspace Clustering | Accuracy: 99.08% |
| skeleton-based-action-recognition-on-ut | Temporal Subspace Clustering | Accuracy: 99.50% |