3 个月前

利用未标记样本增强少样本图像分类

利用未标记样本增强少样本图像分类

摘要

我们提出了一种归纳式元学习方法,利用未标记样本提升少样本图像分类的性能。该方法结合了基于正则化马氏距离的软k-means聚类过程与一种改进的前沿神经自适应特征提取器,在测试阶段充分利用未标记数据,从而显著提升分类准确率。我们在归纳式少样本学习任务上对所提方法进行了评估,其目标是在给定一组支持集(训练样本)的前提下,联合预测查询集(测试样本)的标签。实验结果表明,该方法在Meta-Dataset、mini-ImageNet和tiered-ImageNet三个基准数据集上均达到了当前最优水平。所有训练好的模型及源代码已公开发布于GitHub:github.com/plai-group/simple-cnaps。

代码仓库

peymanbateni/simple-cnaps
pytorch
GitHub 中提及
plai-group/simple-cnaps
官方
tf
GitHub 中提及

基准测试

基准方法指标
few-shot-image-classification-on-meta-datasetTransductive CNAPS
Accuracy: 70.32
few-shot-image-classification-on-meta-dataset-1Transductive CNAPS
Mean Rank: 3.05
few-shot-image-classification-on-mini-12Transductive CNAPS + FETI
Accuracy: 68.5
few-shot-image-classification-on-mini-12Transductive CNAPS
Accuracy: 42.8
few-shot-image-classification-on-mini-13Transductive CNAPS + FETI
Accuracy: 85.9
few-shot-image-classification-on-mini-13Transductive CNAPS
Accuracy: 59.6
few-shot-image-classification-on-mini-2Transductive CNAPS
Accuracy: 55.6
few-shot-image-classification-on-mini-2Transductive CNAPS + FETI
Accuracy: 79.9
few-shot-image-classification-on-mini-3Transductive CNAPS + FETI
Accuracy: 91.5
few-shot-image-classification-on-mini-3Transductive CNAPS
Accuracy: 73.1
few-shot-image-classification-on-tieredTransductive CNAPS
Accuracy: 65.9
few-shot-image-classification-on-tieredTransductive CNAPS + FETI
Accuracy: 73.8
few-shot-image-classification-on-tiered-1Transductive CNAPS
Accuracy: 81.8
few-shot-image-classification-on-tiered-1Transductive CNAPS + FETI
Accuracy: 87.7
few-shot-image-classification-on-tiered-2Transductive CNAPS
Accuracy: 54.6
few-shot-image-classification-on-tiered-2Transductive CNAPS + FETI
Accuracy: 65.1
few-shot-image-classification-on-tiered-3Transductive CNAPS + FETI
Accuracy: 80.6
few-shot-image-classification-on-tiered-3Transductive CNAPS
Accuracy: 72.5

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
利用未标记样本增强少样本图像分类 | 论文 | HyperAI超神经