3 个月前

通过协变量偏移适应提升对常见噪声的鲁棒性

通过协变量偏移适应提升对常见噪声的鲁棒性

摘要

当前最先进的机器视觉模型容易受到图像退化(如模糊或压缩伪影)的影响,这在许多实际应用场景中限制了其性能表现。本文指出,目前广泛使用的评估模型对常见图像退化鲁棒性的基准(如ImageNet-C)在许多(但并非全部)应用情境下低估了模型的真实鲁棒性。其核心洞察在于:在许多实际场景中,可获取多个未标注的退化图像样本,这些样本可用于无监督的在线自适应。通过用退化图像本身的激活统计量替代训练集上由批量归一化(Batch Normalization)估计的统计量,我们发现这一方法在25种主流计算机视觉模型上均能一致地提升模型鲁棒性。以ResNet-50为例,采用修正后的统计量后,其在ImageNet-C上的平均分类误差(mCE)从未经适应的76.7%降低至62.2%。对于更具鲁棒性的DeepAugment+AugMix模型,我们进一步将当前ResNet-50架构所达到的最先进水平从53.6% mCE提升至45.4% mCE。值得注意的是,仅使用单个样本进行适应即可显著提升ResNet-50与AugMix模型的鲁棒性,而仅需32个样本即可使ResNet-50架构的性能超越当前最优水平。我们主张,在报告退化基准测试结果以及其他分布外泛化场景下的性能指标时,应始终包含经过统计量自适应后的结果,以更真实地反映模型在现实应用中的表现。

代码仓库

Claydon-Wang/OFTTA
pytorch
GitHub 中提及
bethgelab/robustness
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
image-classification-on-objectnetResNet-50 + FixUp
Top-1 Accuracy: 28.5
Top-5 Accuracy: 48.6
image-classification-on-objectnetResNet-50 + RoHL
Top-1 Accuracy: 29.2
image-classification-on-objectnetResNet-50 + GroupNorm
Top-1 Accuracy: 29.2
Top-5 Accuracy: 50.2
unsupervised-domain-adaptation-on-imagenet-cResNeXt101+DeepAug+AugMix, BatchNorm Adaptation, full adaptation
mean Corruption Error (mCE): 38.0
unsupervised-domain-adaptation-on-imagenet-cResNeXt101+DeepAug+AugMix, BatchNorm Adaptation, 8 samples
mean Corruption Error (mCE): 40.7
unsupervised-domain-adaptation-on-imagenet-cResNet50+DeepAug+AugMix, BatchNorm Adaptation, 8 samples
mean Corruption Error (mCE): 48.4
unsupervised-domain-adaptation-on-imagenet-cResNet50 (baseline), BatchNorm Adaptation, 8 samples
mean Corruption Error (mCE): 65.0
unsupervised-domain-adaptation-on-imagenet-cResNet50 (baseline), BatchNorm Adaptation, full adaptation
mean Corruption Error (mCE): 62.2
unsupervised-domain-adaptation-on-imagenet-cResNet50+DeepAug+AugMix, BatchNorm Adaptation, full adaptation
mean Corruption Error (mCE): 45.4
unsupervised-domain-adaptation-on-imagenet-rResNet50+DeepAug+Augmix, BatchNorm adaptation
Top 1 Error: 48.9
unsupervised-domain-adaptation-on-imagenet-rResNet50, BatchNorm adaptation
Top 1 Error: 59.9
unsupervised-domain-adaptation-on-imagenet-rResNeXt101+DeepAug+AugMix, BatchNorm Adaptation,
Top 1 Error: 44.0

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
通过协变量偏移适应提升对常见噪声的鲁棒性 | 论文 | HyperAI超神经