4 个月前

简单而深刻的图卷积网络

简单而深刻的图卷积网络

摘要

图卷积网络(GCNs)是一种强大的深度学习方法,适用于图结构数据。近年来,GCNs及其后续变体在现实世界数据集的各种应用领域中表现出色。尽管取得了成功,但大多数当前的GCN模型仍然较浅,这是由于{\em 过平滑}问题所致。本文研究了设计和分析深层图卷积网络的问题。我们提出了GCNII,即通过两种简单而有效的方法对原始GCN模型进行扩展:{\em 初始残差}和{\em 恒等映射}。我们提供了理论和实验证据,证明这两种技术可以有效地缓解过平滑问题。实验结果表明,深层的GCNII模型在各种半监督和全监督任务上均优于现有最先进方法。代码可在https://github.com/chennnM/GCNII 获取。

代码仓库

tyxxzjpdez/GCNII-DropGroups
pytorch
GitHub 中提及
chennnM/GCNII
官方
pytorch
GitHub 中提及
zhanglab-aim/cancer-net
pytorch
GitHub 中提及

基准测试

基准方法指标
graph-classification-on-peptides-funcGCNII
AP: 0.5543±0.0078
graph-regression-on-peptides-structGCNII
MAE: 0.3471±0.0010
link-prediction-on-pcqm-contactGCNII
Hits@1: 0.1325±0.0009
Hits@10: 0.8116±0.0009
Hits@3: 0.3607±0.0003
MRR: 0.3161±0.0004
node-classification-on-actorGCNII
Accuracy: 37.44 ± 1.30
node-classification-on-chameleonGCNII
Accuracy: 63.86 ± 3.04
node-classification-on-chameleon-60-20-20GCNII*
1:1 Accuracy: 62.8 ± 2.87
node-classification-on-chameleon-60-20-20GCNII
1:1 Accuracy: 60.35 ± 2.7
node-classification-on-citeseer-48-32-20GCNII
1:1 Accuracy: 77.33 ± 1.48
node-classification-on-citeseer-60-20-20GCNII
1:1 Accuracy: 81.58 ± 1.3
node-classification-on-citeseer-60-20-20GCNII*
1:1 Accuracy: 81.83 ± 1.78
node-classification-on-citeseer-fullGCNII*
Accuracy: 77.13%
node-classification-on-citeseer-with-publicGCNII
Accuracy: 73.4%
node-classification-on-coco-spGCNII
macro F1: 0.1404±0.0011
node-classification-on-cora-48-32-20-fixedGCNII
1:1 Accuracy: 88.37 ± 1.25
node-classification-on-cora-60-20-20-randomGCNII
1:1 Accuracy: 88.98 ± 1.33
node-classification-on-cora-60-20-20-randomGCNII*
1:1 Accuracy: 88.93 ± 1.37
node-classification-on-cora-full-supervisedGCNII
Accuracy: 88.49%
node-classification-on-cora-with-public-splitGCNII
Accuracy: 85.5%
node-classification-on-cornellGCNII
Accuracy: 77.86 ± 3.79
node-classification-on-cornell-60-20-20GCNII*
1:1 Accuracy: 90.49 ± 4.45
node-classification-on-cornell-60-20-20GCNII
1:1 Accuracy: 89.18 ± 3.96
node-classification-on-film-60-20-20-randomGCNII
1:1 Accuracy: 40.82 ± 1.79
node-classification-on-film-60-20-20-randomGCNII*
1:1 Accuracy: 41.54 ± 0.99
node-classification-on-geniusGCNII
Accuracy: 90.24 ± 0.09
node-classification-on-non-homophilicGCNII
1:1 Accuracy: 89.18 ± 3.96
node-classification-on-non-homophilicGCNII*
1:1 Accuracy: 90.49 ± 4.45
node-classification-on-non-homophilic-1GCNII
1:1 Accuracy: 83.25 ± 2.69
node-classification-on-non-homophilic-1GCNII*
1:1 Accuracy: 89.12 ± 3.06
node-classification-on-non-homophilic-10GCNII
1:1 Accuracy: 37.44 ± 1.30
node-classification-on-non-homophilic-11GCNII
1:1 Accuracy: 63.86 ± 3.04 
node-classification-on-non-homophilic-12GCNII
1:1 Accuracy: 38.47 ± 1.58
node-classification-on-non-homophilic-13GCNII
1:1 Accuracy: 82.92 ± 0.59
node-classification-on-non-homophilic-14GCNII
1:1 Accuracy: 90.24 ± 0.09
node-classification-on-non-homophilic-15GCNII
1:1 Accuracy: 63.39 ± 0.61
node-classification-on-non-homophilic-2GCNII*
1:1 Accuracy: 88.52 ± 3.02
node-classification-on-non-homophilic-2GCNII
1:1 Accuracy: 82.46 ± 4.58
node-classification-on-non-homophilic-4GCNII*
1:1 Accuracy: 62.8 ± 2.87
node-classification-on-non-homophilic-4GCNII
1:1 Accuracy: 60.35 ± 2.7
node-classification-on-non-homophilic-6GCNII
1:1 Accuracy: 66.38±0.45
node-classification-on-non-homophilic-6GCNII*
1:1 Accuracy: 66.42±0.56
node-classification-on-non-homophilic-7GCNII
1:1 Accuracy: 77.86 ± 3.79 
node-classification-on-non-homophilic-8GCNII
1:1 Accuracy: 80.39 ± 3.40
node-classification-on-non-homophilic-9GCNII
1:1 Accuracy: 77.57 ± 3.83
node-classification-on-pascalvoc-sp-1GCNII
macro F1: 0.1698±0.0080
node-classification-on-penn94GCNII
Accuracy: 82.92 ± 0.59
node-classification-on-ppiGCNII*
F1: 99.56
node-classification-on-pubmed-48-32-20-fixedGCNII
1:1 Accuracy: 90.15 ± 0.43
node-classification-on-pubmed-60-20-20-randomGCNII*
1:1 Accuracy: 89.98 ± 0.52
node-classification-on-pubmed-60-20-20-randomGCNII
1:1 Accuracy: 89.8 ± 0.3
node-classification-on-pubmed-full-supervisedGCNII*
Accuracy: 90.30%
node-classification-on-pubmed-with-publicGCNII
Accuracy: 80.2%
node-classification-on-squirrelGCNII
Accuracy: 38.47 ± 1.58
node-classification-on-squirrel-60-20-20GCNII
1:1 Accuracy: 38.81 ± 1.97
node-classification-on-squirrel-60-20-20GCNII*
1:1 Accuracy: 38.31 ± 1.3
node-classification-on-texasGCNII
Accuracy: 77.57 ± 3.83
node-classification-on-texas-60-20-20-randomGCNII*
1:1 Accuracy: 88.52 ± 3.02
node-classification-on-texas-60-20-20-randomGCNII
1:1 Accuracy: 82.46 ± 4.58
node-classification-on-wisconsinGCNII
Accuracy: 80.39 ± 3.40
node-classification-on-wisconsin-60-20-20GCNII*
1:1 Accuracy: 89.12 ± 3.06
node-classification-on-wisconsin-60-20-20GCNII
1:1 Accuracy: 83.25 ± 2.69

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
简单而深刻的图卷积网络 | 论文 | HyperAI超神经