
摘要
我们提出了一种在行人重识别(person re-identification)任务中自适应调整L2正则化强度的机制。在现有文献中,通常采用人工选定的、在整个训练过程中保持不变的正则化系数。与现有方法不同,本文所提出的正则化系数通过反向传播实现自适应更新。具体而言,我们引入可学习的标量变量作为正则化系数,并将其输入到一个缩放后的硬Sigmoid函数中进行动态调节。在Market-1501、DukeMTMC-reID和MSMT17三个主流数据集上的大量实验验证了该框架的有效性。尤为突出的是,我们在目前规模最大、最具挑战性的行人重识别数据集MSMT17上取得了当前最优的性能表现。项目源代码已公开,可访问 https://github.com/nixingyang/AdaptiveL2Regularization 获取。
代码仓库
nixingyang/AdaptiveL2Regularization
官方
tf
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| person-re-identification-on-dukemtmc-reid | Adaptive L2 Regularization (with re-ranking) | Rank-1: 92.2 mAP: 90.7 |
| person-re-identification-on-dukemtmc-reid | Adaptive L2 Regularization (without re-ranking) | Rank-1: 90.2 mAP: 81.0 |
| person-re-identification-on-market-1501 | Adaptive L2 Regularization (without re-ranking) | Rank-1: 95.6 mAP: 88.9 |
| person-re-identification-on-market-1501 | Adaptive L2 Regularization (with re-ranking) | Rank-1: 96.0 mAP: 94.4 |
| person-re-identification-on-msmt17 | Adaptive L2 Regularization (without re-ranking) | Rank-1: 81.7 mAP: 62.2 |
| person-re-identification-on-msmt17 | Adaptive L2 Regularization (with re-ranking) | Rank-1: 84.9 mAP: 76.7 |