
摘要
对话行为识别与情感/情绪识别等序列标注任务是语音对话系统中的关键组成部分。本文提出了一种新方法,用于学习适用于语音对话的通用表示,并在我们提出的全新基准测试集——语音语言序列标注评估基准(Sequence Labelling Evaluation Benchmark for Spoken Language, \texttt{SILICONE})上进行了评估。\texttt{SILICONE} 具有模型无关性,包含10个不同规模的数据集。我们采用基于Transformer架构的层次化编码器来获取这些表示,并对两种广为人知的预训练目标进行了扩展。预训练在OpenSubtitles数据集上进行,该数据集是一个大规模语音对话语料库,包含超过23亿个词元(tokens)。实验结果表明,与当前最先进模型相比,层次化编码器在保持优异性能的同时,参数量显著更少,且在预训练和微调阶段均展现出重要优势。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| dialogue-act-classification-on-icsi-meeting | Pretrained Hierarchical Transformer | Accuracy: 92.4 |
| dialogue-act-classification-on-switchboard | Pretrained Hierarchical Transformer | Accuracy: 79.2 |
| emotion-recognition-in-conversation-on | Pretrained Hierarchical Transformer | Accuracy: 66.05 Weighted-F1: 65.37 |
| emotion-recognition-in-conversation-on-2 | Pretrained Hierarchical Transformer | MAE (Arousal): 0.16 MAE (Expectancy): 0.16 MAE (Power): 7.70 MAE (Valence): 0.16 |
| emotion-recognition-in-conversation-on-3 | Pretrained Hierarchical Transformer | Micro-F1: 60.14 |
| emotion-recognition-in-conversation-on-meld | Pretrained Hierarchical Transformer | Weighted-F1: 61.90 |
| text-classification-on-silicone-benchmark | Pretrained Hierarchical Transformer | 1:1 Accuracy: 71.25 |