4 个月前

通过遮挡完成的无监督点云预训练

通过遮挡完成的无监督点云预训练

摘要

我们描述了一种用于点云的简单预训练方法。该方法分为三个步骤:1. 遮蔽在相机视图中被遮挡的所有点;2. 学习一个编码器-解码器模型以重建这些被遮挡的点;3. 使用编码器的权重作为下游点云任务的初始化。我们发现,即使仅从ModelNet40构建单一的预训练数据集,这种方法也能在不同的数据集和编码器上提高多种下游任务的准确性。具体而言,我们的方法在物体分类以及基于部件和语义分割任务中均优于先前的预训练方法。我们对预训练特征进行了研究,发现它们导致了广泛的下游最小值,具有较高的变换不变性,并且其激活与部件标签高度相关。代码和数据可在以下地址获取:https://github.com/hansen7/OcCo

代码仓库

hansen7/OcCo
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
3d-point-cloud-linear-classification-onOcCo
Overall Accuracy: 89.2
3d-point-cloud-linear-classification-on-1OcCo
Overall Accuracy: 78.3
few-shot-3d-point-cloud-classification-on-1OcCo+DGCNN
Overall Accuracy: 90.6
Standard Deviation: 2.8
few-shot-3d-point-cloud-classification-on-1OcCo+PointNet
Overall Accuracy: 89.7
Standard Deviation: 1.9
few-shot-3d-point-cloud-classification-on-2OcCo+PointNet
Overall Accuracy: 92.4
Standard Deviation: 1.6
few-shot-3d-point-cloud-classification-on-2OcCo+DGCNN
Overall Accuracy: 92.5
Standard Deviation: 1.9
few-shot-3d-point-cloud-classification-on-3OcCo+DGCNN
Overall Accuracy: 82.9
Standard Deviation: 1.3
few-shot-3d-point-cloud-classification-on-3OcCo+PointNet
Overall Accuracy: 83.9
Standard Deviation: 1.8
few-shot-3d-point-cloud-classification-on-4OcCo+PointNet
Overall Accuracy: 89.7
Standard Deviation: 1.5
few-shot-3d-point-cloud-classification-on-4OcCo+DGCNN
Overall Accuracy: 86.5
Standard Deviation: 2.2
few-shot-3d-point-cloud-classification-on-6OcCo
Overall Accuracy: 57.0
point-cloud-classification-on-pointcloud-cOcCo-DGCNN
mean Corruption Error (mCE): 1.047
point-cloud-segmentation-on-pointcloud-cOcCo-PointNet
mean Corruption Error (mCE): 1.130
point-cloud-segmentation-on-pointcloud-cOcCo-DGCNN
mean Corruption Error (mCE): 0.977
point-cloud-segmentation-on-pointcloud-cOcCo-PCN
mean Corruption Error (mCE): 1.173

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
通过遮挡完成的无监督点云预训练 | 论文 | HyperAI超神经