
摘要
我们提出PREDATOR,一种面向点云对配准的深度注意力模型,特别关注点云间的重叠区域。与以往方法不同,本模型专为处理重叠度较低的点云对而设计。其核心创新在于引入了“重叠注意力模块”(overlap-attention block),实现两个点云潜在编码之间的早期信息交互。通过该机制,后续将潜在表示解码为逐点特征的过程能够基于另一点云的信息进行条件化,从而有效预测出不仅具有显著性,而且位于两组点云重叠区域内的关键点。该能力使模型能够聚焦于对配准任务具有重要意义的点,显著提升性能:在低重叠场景下,成功配准率提升超过20%;同时在3DMatch基准测试中达到89%的配准召回率,创下新的技术水平。
代码仓库
prs-eth/overlappredator
pytorch
GitHub 中提及
overlappredator/OverlapPredator
pytorch
GitHub 中提及
ShengyuH/OverlapPredator
官方
pytorch
GitHub 中提及
qinzheng93/geotransformer
pytorch
GitHub 中提及
zhulf0804/predator
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| point-cloud-registration-on-3dlomatch-10-30 | Predator-1k | Recall ( correspondence RMSE below 0.2): 62.5 |
| point-cloud-registration-on-3dlomatch-10-30 | Predator-5k | Recall ( correspondence RMSE below 0.2): 59.8 |
| point-cloud-registration-on-3dlomatch-10-30 | Predator-NR | Recall ( correspondence RMSE below 0.2): 24 |
| point-cloud-registration-on-3dmatch-at-least-2 | Predator-5k | Recall ( correspondence RMSE below 0.2): 89 |
| point-cloud-registration-on-3dmatch-at-least-2 | Predator-1k | Recall ( correspondence RMSE below 0.2): 90.5 |
| point-cloud-registration-on-3dmatch-at-least-2 | Predator-NR | Recall ( correspondence RMSE below 0.2): 62.7 |
| point-cloud-registration-on-kitti-trained-on | Predator | Success Rate: 41.20 |
| point-cloud-registration-on-rotkitti | PREDATOR | RR@(1,0.1): 35.0 RR@(1.5,0.3): 41.6 |