
摘要
本文提出了一种概念简洁、性能强劲且高效的整体分割框架——Panoptic FCN。该方法旨在通过统一的全卷积网络流程,同时实现对前景物体(things)与背景场景(stuff)的建模与预测。具体而言,Panoptic FCN通过所提出的核生成器,将每个物体实例或场景类别编码为特定的卷积核权重,并直接对高分辨率特征图进行卷积操作以生成最终预测结果。该方法在“生成核—分割”这一简洁流程中,分别实现了对物体实例的感知能力与对语义一致性的保障。与以往依赖额外边界框进行定位或实例分离的方法不同,本方法无需额外的检测框,仅使用单尺度输入,便在COCO、Cityscapes和Mapillary Vistas等多个基准数据集上取得了优于先前基于框(box-based)与无框(box-free)模型的性能表现,同时保持了极高的运行效率。相关代码已公开,地址为:https://github.com/Jia-Research-Lab/PanopticFCN。
代码仓库
dvlab-research/msad
pytorch
GitHub 中提及
DdeGeus/PanopticFCN-IBS
pytorch
GitHub 中提及
yanwei-li/PanopticFCN
官方
pytorch
GitHub 中提及
Jia-Research-Lab/PanopticFCN
官方
pytorch
GitHub 中提及
Jia-Research-Lab/MSAD
pytorch
GitHub 中提及
dvlab-research/panopticfcn
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| panoptic-segmentation-on-cityscapes-val | Panoptic FCN* (ResNet-50-FPN) | PQst: 66.6 |
| panoptic-segmentation-on-cityscapes-val | Panoptic FCN* (Swin-L, Cityscapes-fine) | PQst: 70.6 PQth: 59.5 |
| panoptic-segmentation-on-cityscapes-val | Panoptic FCN* (ResNet-FPN) | PQ: 61.4 PQth: 54.8 |
| panoptic-segmentation-on-coco-minival | Panoptic FCN* (ResNet-50-FPN) | PQ: 44.3 PQst: 35.6 PQth: 50 RQ: 53 RQst: 43.5 RQth: 59.3 SQ: 80.7 SQst: 76.7 SQth: 83.4 |
| panoptic-segmentation-on-coco-minival | Panoptic FCN* (Swin-L, single-scale) | PQth: 58.5 RQ: 61.6 RQst: 51.1 RQth: 68.6 SQ: 83.2 SQst: 81.1 SQth: 84.6 |
| panoptic-segmentation-on-coco-test-dev | Panoptic FCN*++ (DCN-101-FPN) | PQ: 47.5 PQst: 38.2 PQth: 53.7 |
| panoptic-segmentation-on-coco-test-dev | Panoptic FCN* (Swin-L) | PQ: 52.7 PQth: 59.4 |
| panoptic-segmentation-on-mapillary-val | Panoptic FCN* (ResNet-FPN) | PQ: 36.9 PQth: 32.9 |
| panoptic-segmentation-on-mapillary-val | Panoptic FCN* (ResNet-50-FPN) | PQst: 42.3 |
| panoptic-segmentation-on-mapillary-val | Panoptic FCN* (Swin-L, single-scale) | PQ: 45.7 PQst: 52.1 PQth: 40.8 |