
摘要
在许多实际的少样本学习问题中,尽管标注样本稀少,但通常存在大量潜在包含有用信息的辅助数据集。为此,我们提出了“扩展少样本学习”(extended few-shot learning)这一新问题,以研究此类场景。针对少样本图像分类中高效选择并有效利用辅助数据的挑战,我们提出了一种新的框架。给定一个大规模的辅助数据集以及类别之间的语义相似性概念,我们自动选取“伪支持样本”(pseudo shots),即来自与目标任务相关其他类别的标注样本。我们发现,传统的简单方法,如(1)将这些额外样本与目标任务样本同等建模,或(2)通过迁移学习利用它们来学习特征,仅能带来有限的准确率提升。相比之下,我们提出了一种掩码模块(masking module),该模块通过调整辅助数据的特征表示,使其更接近目标任务类别的特征。实验表明,该掩码模块在性能上分别优于简单的支持样本建模方法和迁移学习策略,准确率提升分别达4.68和6.03个百分点。
代码仓库
Reza-esfandiarpoor/pseudo-shots
官方
pytorch
GitHub 中提及
BatsResearch/efsl
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| few-shot-image-classification-on-cifar-fs-1 | pseudo-shots | Accuracy: 81.87% |
| few-shot-image-classification-on-cifar-fs-5 | pseudo-shots | Accuracy: 81.87 |
| few-shot-image-classification-on-cifar-fs-5-1 | pseudo-shots | Accuracy: 89.12 |
| few-shot-image-classification-on-cifar-fs-5-2 | pseudo-shots | Accuracy: 89.12 |
| few-shot-image-classification-on-fc100-5-way | pseudo-shots | Accuracy: 50.57 |
| few-shot-image-classification-on-fc100-5-way-1 | pseudo-shots | Accuracy: 61.58 |
| few-shot-image-classification-on-fewshot | pseudo-shots | Accuracy: 50.57% |
| few-shot-image-classification-on-fewshot-1 | pseudo-shots | Accuracy: 61.58% |
| few-shot-image-classification-on-mini-2 | pseudo-shots | Accuracy: 73.35 |
| few-shot-image-classification-on-mini-3 | pseudo-shots | Accuracy: 82.51 |
| few-shot-image-classification-on-tiered | pseudo-shots | Accuracy: 76.55 |
| few-shot-image-classification-on-tiered-1 | pseudo-shots | Accuracy: 86.82 |