
摘要
自注意力网络已彻底革新了自然语言处理领域,并在图像分析任务(如图像分类和目标检测)中取得了令人瞩目的进展。受此成功的启发,我们探索了自注意力网络在三维点云处理中的应用。为此,我们设计了适用于点云的自注意力模块,并基于这些模块构建了用于语义场景分割、物体部件分割以及物体分类等任务的自注意力网络。我们的Point Transformer架构在多个领域和任务上均优于先前的方法。例如,在大规模语义场景分割的挑战性数据集S3DIS上,Point Transformer在Area 5测试集上取得了70.4%的mIoU(平均交并比),相比最强的先前模型提升了3.3个百分点,并首次突破了70%的mIoU阈值。
代码仓库
tkdguraa/point-transformer-tensorflow
tf
GitHub 中提及
POSTECH-CVLab/point-transformer
pytorch
GitHub 中提及
Meowuu7/Point-Transformer
pytorch
GitHub 中提及
isl-org/Open3D-ML
pytorch
POSTECH-CVLab/FastPointTransformer
pytorch
GitHub 中提及
qq456cvb/Point-Transformers
pytorch
GitHub 中提及
alzmzyy/pointtransformer
mindspore
GitHub 中提及
KernelA/pytorch-point-transformer
pytorch
GitHub 中提及
sh4175515/PointTransformer
mindspore
2023-MindSpore-1/ms-code-48
mindspore
GitHub 中提及
jxl152/Point-Transformer
pytorch
rauleun/point-transformer-tf2
tf
GitHub 中提及
engelnico/point-transformer
pytorch
lucidrains/point-transformer-pytorch
pytorch
GitHub 中提及
Pointcept/Pointcept
官方
pytorch
GitHub 中提及
Sharpiless/Point-Transformer-Pytorch
pytorch
GitHub 中提及
gofinge/pointtransformerv2
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| 3d-part-segmentation-on-shapenet-part | PointTransformer | Class Average IoU: 83.7 Instance Average IoU: 86.6 |
| 3d-point-cloud-classification-on-modelnet40 | PointTransformer | Mean Accuracy: 90.6 Overall Accuracy: 93.7 |
| 3d-semantic-segmentation-on-s3dis | PointTransformer | mIoU (6-Fold): 73.5 mIoU (Area-5): 70.4 |
| 3d-semantic-segmentation-on-stpls3d | Point transformer | mIOU: 47.64 |
| point-cloud-segmentation-on-pointcloud-c | PointTransformers | mean Corruption Error (mCE): 1.049 |
| semantic-segmentation-on-s3dis | PointCNN | Mean IoU: 65.4 Number of params: N/A |
| semantic-segmentation-on-s3dis | SPGraph | Mean IoU: 62.1 Number of params: N/A |
| semantic-segmentation-on-s3dis | PointTransformer | Mean IoU: 73.5 Number of params: 7.8M Params (M): 7.8 mAcc: 81.9 oAcc: 90.2 |
| semantic-segmentation-on-s3dis | PointNet | Mean IoU: 47.6 Number of params: N/A |
| semantic-segmentation-on-s3dis | KPConv | Mean IoU: 70.6 Number of params: 14.1M Params (M): 14.1 |
| semantic-segmentation-on-s3dis-area5 | PointNet | Number of params: N/A mIoU: 41.1 |
| semantic-segmentation-on-s3dis-area5 | PointCNN | Number of params: N/A mIoU: 57.3 |
| semantic-segmentation-on-s3dis-area5 | PointTransformer | Number of params: 7.8M mAcc: 76.5 mIoU: 70.4 oAcc: 90.8 |