4 个月前

超越图卷积网络中的低频信息

超越图卷积网络中的低频信息

摘要

图神经网络(GNNs)已在各种网络相关任务中证明了其有效性。大多数现有的GNN通常利用节点特征的低频信号,这引发了一个基本问题:在实际应用中,低频信息是否就是我们所需要的全部信息?本文首先通过实验研究评估了低频信号和高频信号的作用,结果清楚地表明,在不同场景下,仅探索低频信号远远不足以学习有效的节点表示。如何使GNN自适应地学习超出低频信息的更多内容?一个有见地的答案可以帮助GNN增强其适应性。我们应对这一挑战,提出了一种具有自门控机制的新型频率自适应图卷积网络(FAGCN),该机制可以在消息传递过程中自适应地整合不同的信号。为了深入理解,我们从理论上分析了低频信号和高频信号在学习节点表示中的作用,进一步解释了为什么FAGCN能够在不同类型网络上表现出色。在六个真实世界网络上的广泛实验验证了FAGCN不仅缓解了过平滑问题,还在性能上优于现有最先进方法。

代码仓库

bdy9527/FAGCN
官方
pytorch

基准测试

基准方法指标
node-classification-on-actorFAGCN
Accuracy: 34.82 ± 1.35
node-classification-on-chameleonFAGCN
Accuracy: 46.07 ± 2.11
node-classification-on-chameleon-60-20-20FAGCN
1:1 Accuracy: 49.47 ± 2.84
node-classification-on-citeseer-48-32-20FAGCN
1:1 Accuracy: 77.07 ± 2.05
node-classification-on-citeseer-60-20-20FAGCN
1:1 Accuracy: 82.37 ± 1.46
node-classification-on-citeseer-60-20-20H2GCN
1:1 Accuracy: 79.97 ± 0.69
node-classification-on-cora-48-32-20-fixedFAGCN
1:1 Accuracy: 88.05 ± 1.57
node-classification-on-cora-60-20-20-randomFAGCN
1:1 Accuracy: 88.85 ± 1.36
node-classification-on-cornellFAGCN
Accuracy: 76.76 ± 5.87
node-classification-on-cornell-60-20-20FAGCN
1:1 Accuracy: 88.03 ± 5.6
node-classification-on-film-60-20-20-randomFAGCN
1:1 Accuracy: 31.59 ± 1.37
node-classification-on-film-60-20-20-randomH2GCN
1:1 Accuracy: 38.85 ± 1.17
node-classification-on-non-homophilicFAGCN
1:1 Accuracy: 88.03 ± 5.6
node-classification-on-non-homophilic-1FAGCN
1:1 Accuracy: 89.75 ± 6.37
node-classification-on-non-homophilic-10FAGCN
1:1 Accuracy: 34.82 ± 1.35
node-classification-on-non-homophilic-11FAGCN
1:1 Accuracy: 46.07 ± 2.11
node-classification-on-non-homophilic-12FAGCN
1:1 Accuracy: 30.83 ± 0.69
node-classification-on-non-homophilic-2FAGCN
1:1 Accuracy: 88.85 ± 4.39
node-classification-on-non-homophilic-4FAGCN
1:1 Accuracy: 49.47 ± 2.84
node-classification-on-non-homophilic-6FAGCN
1:1 Accuracy: 66.86±0.53
node-classification-on-non-homophilic-7FAGCN
1:1 Accuracy: 76.76 ± 5.87
node-classification-on-non-homophilic-8FAGCN
1:1 Accuracy: 79.61 ± 1.58
node-classification-on-non-homophilic-9H2GCN
1:1 Accuracy: 84.86 ± 7.23
node-classification-on-non-homophilic-9FAGCN
1:1 Accuracy: 76.49 ± 2.87
node-classification-on-pubmed-48-32-20-fixedFAGCN
1:1 Accuracy: 88.09 ± 1.38
node-classification-on-pubmed-60-20-20-randomFAGCN
1:1 Accuracy: 89.98 ± 0.54
node-classification-on-squirrelFAGCN
Accuracy: 30.83 ± 0.69
node-classification-on-squirrel-60-20-20FAGCN
1:1 Accuracy: 42.24 ± 1.2
node-classification-on-texasFAGCN
Accuracy: 76.49 ± 2.87
node-classification-on-texas-60-20-20-randomFAGCN
1:1 Accuracy: 88.85 ± 4.39
node-classification-on-wisconsinFAGCN
Accuracy: 79.61 ± 1.58
node-classification-on-wisconsinWRGAT
Accuracy: 86.98 ± 3.78
node-classification-on-wisconsin-60-20-20FAGCN
1:1 Accuracy: 89.75 ± 6.37

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
超越图卷积网络中的低频信息 | 论文 | HyperAI超神经