Priya GoyalMathilde CaronBenjamin LefaudeuxMin XuPengchao WangVivek PaiMannat SinghVitaliy LiptchinskyIshan MisraArmand JoulinPiotr Bojanowski

摘要
近期,像MoCo、SimCLR、BYOL和SwAV等自监督学习方法已显著缩小了与监督学习方法之间的差距。然而,这些成果均是在受控环境——即经过精心筛选的ImageNet数据集——下取得的。自监督学习的核心前提在于,其能够从任意随机图像以及任意无边界的数据集中进行学习。在本项工作中,我们通过在大量随机、未经筛选的图像上训练大规模模型,且不依赖任何标注信息,来检验自监督学习是否真正能够满足这一预期。我们最终提出的自监督模型——SElf-supERvised(SEER),采用参数量达13亿的RegNetY架构,在10亿张随机图像上,使用512块GPU进行训练,取得了84.2%的top-1准确率,较现有最优的自监督预训练模型提升了1个百分点,验证了自监督学习在真实世界场景下的有效性。有趣的是,我们还发现,自监督模型具备出色的少样本学习能力,在仅使用ImageNet数据集10%样本的情况下,仍能达到77.9%的top-1准确率。代码已开源:https://github.com/facebookresearch/vissl
代码仓库
facebookresearch/vissl
官方
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| image-classification-on-places205 | SEER | Top 1 Accuracy: 66.0 |
| image-classification-on-places205 | RegNetY-128GF (Supervised) | Top 1 Accuracy: 62.7 |
| self-supervised-image-classification-on-1 | SEER (RegNetY-256GF) | Number of Params: 1.3B Top 1 Accuracy: 84.2% |
| self-supervised-image-classification-on-1 | SEER (RegNetY-128GF) | Number of Params: 693M Top 1 Accuracy: 83.8% |
| semi-supervised-image-classification-on-1 | SEER Large (RegNetY-256GF) | Top 1 Accuracy: 60.5% |
| semi-supervised-image-classification-on-1 | SEER Small (RegNetY-128GF) | Top 1 Accuracy: 57.5% |
| semi-supervised-image-classification-on-2 | SEER Large (RegNetY-256GF) | Top 1 Accuracy: 77.9% |
| semi-supervised-image-classification-on-2 | SEER Small (RegNetY-128GF) | Top 1 Accuracy: 76.7% |