
摘要
大多数现有的在线多目标跟踪方法在神经网络中独立完成目标检测,而未引入任何跟踪信息。本文提出一种新型的在线联合检测与跟踪模型——TraDeS(TRAck to DEtect and Segment),通过利用跟踪线索来端到端地辅助检测任务。TraDeS采用代价体(cost volume)机制推断目标的运动偏移,进而将前一帧的目标特征进行传播,以提升当前帧的目标检测与实例分割性能。实验结果表明,TraDeS在四个数据集上均展现出优异的性能与显著优势,涵盖MOT(2D跟踪)、nuScenes(3D跟踪)、MOTS以及Youtube-VIS(实例分割跟踪)任务。项目主页:https://jialianwu.com/projects/TraDeS.html。
代码仓库
JialianW/TraDeS
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| instance-segmentation-on-cityscapes | - | - |
| instance-segmentation-on-nuscenes | TraDeS | MOTA: 68.2 |
| multi-object-tracking-on-dancetrack | TraDes | AssA: 25.4 DetA: 74.5 HOTA: 43.3 IDF1: 41.2 MOTA: 86.2 |
| multi-object-tracking-on-mot15 | Baseline+MFW | MOTA: 66.5 |
| multi-object-tracking-on-mot16 | TraDeS | IDF1: 64.7 MOTA: 70.1 |
| multi-object-tracking-on-mot17 | TraDeS | IDF1: 63.9 MOTA: 69.1 |
| multi-object-tracking-on-mots20 | TraDes | IDF1: 58.7 sMOTSA: 50.8 |
| online-multi-object-tracking-on-mot16 | TraDeS | MOTA: 67.7 |
| video-instance-segmentation-on-youtube-vis-1 | TraDeS | AP50: 52.6 AP75: 32.8 mask AP: 32.6 |