PicekLukáš ; ŠulcMilan ; MatasJiří ; Heilmann-ClausenJacob ; JeppesenThomas S. ; LæssøeThomas ; FrøslevTobias

摘要
我们介绍了一个新的细粒度数据集和基准测试,即丹麦真菌2020(DF20)。该数据集基于提交给丹麦真菌图谱的观察记录构建,其独特之处在于分类学上准确的类别标签、错误数量较少、高度不平衡的长尾类别分布、丰富的观察元数据以及明确定义的类别层次结构。DF20与ImageNet没有重叠,允许从公开可用的ImageNet检查点微调模型时进行无偏比较。所提出的评估协议能够测试利用元数据(例如精确地理位置、生境和基质)改进分类的能力,有助于分类器校准测试,并最终研究设备设置对分类性能的影响。实验使用了卷积神经网络(CNN)和最近的视觉变换器(ViT),结果显示DF20提出了一个具有挑战性的任务。有趣的是,ViT在准确率和宏F1分数方面分别达到了80.45%和0.743,分别将CNN的错误率降低了9%和12%。一种简单的将元数据纳入决策过程的方法使分类准确率提高了超过2.95个百分点,错误率降低了15%。所有方法和实验的源代码可在https://sites.google.com/view/danish-fungi-dataset获取。
代码仓库
picekl/DanishFungiDataset
官方
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| image-classification-on-df20 | Inception-V3 (299) | Top-1: 72.1 Top-3: 86.58 |
| image-classification-on-df20 | SE-ResNeXt-101-32x4d (224) | F1 - macro: 0.66 Top-1: 74.26 Top-3: 87.78 |
| image-classification-on-df20 | ResNet-34 (299) | F1 - macro: 0.60 Top-3: 84.76 |
| image-classification-on-df20 | Inception-ResNet-V2 (299) | F1 - macro: 0.651 Top-1: 74.01 Top-3: 87.49 |
| image-classification-on-df20 | EfficientNet-B1 (299) | F1 - macro: 0.654 Top-1: 74.08 Top-3: 87.68 |
| image-classification-on-df20 | EfficientNet-B3 (224) | F1 - macro: 0.634 Top-1: 72.51 Top-3: 86.77 |
| image-classification-on-df20 | ResNet-50 (299) | Top-1: 73.49 Top-3: 87.13 |
| image-classification-on-df20 | ViT-Large/16 (384) | F1 - macro: 0.743 Top-1: 80.45 Top-3: 91.68 |
| image-classification-on-df20 | EfficientNet-B3 (299) | F1 - macro: 0.673 Top-1: 75.69 Top-3: 88.72 |
| image-classification-on-df20 | ViT-Base/16 (384) | F1 - macro: 0.727 Top-1: 79.48 Top-3: 90.95 |
| image-classification-on-df20 | MobileNet-V2 (299) | Top-1: 69.77 Top-3: 85.01 |
| image-classification-on-df20 | ViT-Large/16 (224) | F1 - macro: 0.675 Top-1: 75.29 Top-3: 88.34 |
| image-classification-on-df20 | SE-ResNeXt-101-32x4d (299) | F1 - macro: 0.693 Top-3: 89.48 |
| image-classification-on-df20 | ResNet-18 | F1 - macro: 0.580 Top-1: 67.13 Top-3: 82.65 |
| image-classification-on-df20 | EfficientNet-B5 (299) | F1 - macro: 0.678 Top-1: 76.1 Top-3: 88.85 |
| image-classification-on-df20 | Inception-V4 (299) | F1 - macro: 0.637 Top-1: 73 Top-3: 86.87 |
| image-classification-on-df20 | EfficientNet-B0 (224) | F1 - macro: 0.613 Top-1: 70.33 Top-3: 85.19 |
| image-classification-on-df20 | EfficientNet-B0 (299) | Top-1: 73.65 |
| image-classification-on-df20 | SE-ResNeXt-101-32x4d | Top-1: 77.13 |
| image-classification-on-df20-mini | ResNet-18 | F1 - macro: 0.514 Top-1: 62.91 Top-3: 81.65 |
| image-classification-on-df20-mini | EfficientNet-B5 (299) | Top-1: 68.76 Top-3: 85 |
| image-classification-on-df20-mini | ResNet-50 (299) | Top-1: 68.49 Top-3: 85.22 |
| image-classification-on-df20-mini | ResNet-34 (299) | F1 - macro: 0.559 Top-3: 83.52 |
| image-classification-on-df20-mini | ViT-Large/16 (384) | F1 - macro: 0.669 Top-1: 75.85 Top-3: 89.95 |
| image-classification-on-df20-mini | Inception-ResNet-V2 (299) | Top-1: 64.67 Top-3: 81.42 |
| image-classification-on-df20-mini | EfficientNet-B3 (224) | F1 - macro: 0.55 Top-1: 67.39 Top-3: 83.74 |
| image-classification-on-df20-mini | EfficientNet-B0 (224) | F1 - macro: 0.531 Top-1: 65.66 Top-3: 83.65 |
| image-classification-on-df20-mini | EfficientNet-B1 (299) | Top-1: 68.35 Top-3: 84.67 |
| image-classification-on-df20-mini | EfficientNet-B0 (299) | F1 - macro: 0.567 Top-1: 67.94 Top-3: 85.71 |
| image-classification-on-df20-mini | ViT-Base/16 (384) | F1 - macro: 0.639 Top-1: 74.23 Top-3: 89.12 |
| image-classification-on-df20-mini | EfficientNet-B3 (299) | F1 - macro: 0.59 Top-1: 69.59 Top-3: 85.55 |
| image-classification-on-df20-mini | ViT-Large/16 (224) | F1 - macro: 0.603 Top-1: 71.04 Top-3: 86.15 |
| image-classification-on-df20-mini | Inception-V3 (299) | F1 - macro: 0.535 Top-1: 65.91 Top-3: 82.97 |
| image-classification-on-df20-mini | SE-ResNeXt-101-32x4d | Top-1: 72.23 |
| image-classification-on-df20-mini | SE-ResNeXt-101-32x4d (224) | F1 - macro: 0.585 Top-1: 68.87 Top-3: 85.14 |
| image-classification-on-df20-mini | MobileNet-V2 (299) | Top-1: 65.58 |
| image-classification-on-df20-mini | Inception-V4 (299) | Top-1: 67.45 Top-3: 82.78 |
| image-classification-on-df20-mini | SE-ResNeXt-101-32x4d (299) | F1 - macro: 0.62 Top-3: 87.28 |