
摘要
在深度学习模型中,全连接(Fully Connected, FC)层在基于前层所学特征对输入进行分类方面扮演着至关重要的角色。FC层通常包含最多的参数,而对这些大量参数进行微调会消耗绝大部分计算资源。因此,本文旨在显著减少FC层的参数数量,同时提升模型性能。该研究的灵感来源于SpinalNet及其他生物结构。所提出的网络架构在输入层与输出层之间构建了一条梯度高速公路,有效缓解了深度网络中的梯度消失问题。在此架构中,每一层不仅接收前序层的输出,还直接接收卷积神经网络(CNN)层的特征输出,从而使得所有层均能参与最终决策过程,增强了信息流动与表征能力。该方法在分类性能上优于原始SpinalNet架构,并在多个数据集(包括Caltech101、KMNIST、QMNIST和EMNIST)上达到了当前最优(SOTA)水平。项目源代码已公开,可访问:https://github.com/praveenchopra/ProgressiveSpinalNet。
代码仓库
praveenchopra/ProgressiveSpinalNet
官方
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| fine-grained-image-classification-on-1 | VGG-5 | Accuracy: 98.98 |
| fine-grained-image-classification-on-bird-225 | Pre trained wide-resnet-101 | Accuracy: 99.55 |
| fine-grained-image-classification-on-caltech | Pre trained wide-resnet-101 | Accuracy: 97.76 |
| fine-grained-image-classification-on-emnist | VGG-5 | Accuracy: 99.82 |
| fine-grained-image-classification-on-emnist-1 | VGG-5 | Accuracy: 95.86 |
| fine-grained-image-classification-on-fruits | Pre trained wide-resnet-101 | Accuracy: 99.97 |
| fine-grained-image-classification-on-mnist | Vanilla FC layer only | Accuracy: 98.19 |
| fine-grained-image-classification-on-qmnist | VGG-5 | Accuracy: 99.6867 |
| fine-grained-image-classification-on-stl-10 | Pre trained wide-resnet-101 | Accuracy: 98.18 |